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Chapter 1

Introduction

Differentiation is one of the first operations students learn in calculus. Originally

used to measure the rate of change of real-valued functions, derivatives now appear

in many different areas. In differential geometry, the notion of smoothness is closely

tied to differentiation, while in algebraic geometry, partial derivatives help one study

singularities of varieties. In both cases, the geometric intuition of the derivative

accounts for its utility.

In addition to geometric insight, there is much information that can be obtained

by studying differentiation from a purely algebraic viewpoint. For example if A is

a commutative ring, R is an A-algebra and M is an R-module then one can study

A-linear maps d : R →M, which satisfy the famous Leibniz product rule:

d(xy) = xd(y) + yd(x).

Such maps are called derivations, and give rise to a universal object known as the

module of differentials, ΩA(R). The module of differentials turns out to have several

applications, and provides methods for proving statements in commutative algebra

which would otherwise be very difficult. For example, the module of differentials

turns out to be necessary for a proper study of separable field extensions!
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The module of differentials also appears in algebraic number theory in the form

of evolutions of algebras. Roughly speaking, an evolution of an algebra is a surjective

ring homomorphism φ which induces an isomorphism of modules of differentials, the

evolution being trivial if φ is an isomorphism. Evolutions arise naturally in the

study of Galois deformations and were at the heart of Wiles’ proof of Fermat’s Last

Theorem. A crucial step in Wiles’ proof was showing that a particular algebra had

no nontrivial evolutions, which took considerable work to prove.

Mazur conjectured that Wiles’ result should hold in for more general algebras. In

particular, he conjectured that all evolutions of reduced algebras in equicharacteristic

zero were trivial. In 1997, Eisenbud and Mazur showed that this conjecture can be

stated beautifully in commutative algebra in terms of the symbolic square of a radical

ideal.

Hence to prove the conjecture of Mazur concerning evolutions, it is sufficient to

study radical ideals. Much work has been done on this problem and the conjecture

has been proven for classes of ideals including (quasi)homogeneous, height 2 perfect,

licci, monomial, and almost complete intersection ideals.

This thesis is the result of two years of directed readings in commutative algebra

under the supervision of Prof. Claudia Polini. In this paper, we tell the story of the

Eisenbud-Mazur conjecture. We begin by giving a thorough treatment of the module

of differentials, proving some major theorems along the way. Later, we will define

evolutions and the related work of Eisenbud and Mazur. In particular we provide a

detailed study of their paper [2] and the translation of the number theoretic statement

to commutative algebra. Finally we list major results for this problem, and give

counterexamples in the nonzero characteristic case.

Assuming a moderate background in commutative algebra is unavoidable, but

in the interest of keeping this as readable as possible, many examples are included,

especially in the beginning. Near the end we will recall some less basic facts includ-
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ing the Cohen structure theorem, but we will provide references to these nontrivial

statements. For general reference, we refer the reader to [1] and [7].
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Chapter 2

The Module of Differentials

We begin this section by introducing notation which we will retain throughout. Let

R be a commutative ring, and M an R-module. We assume all of our rings are

Noetherian. This section is taken from a set of lecture notes of Bernd Ulrich.

2.1 Basic Definitions

One of the first facts we learn in any differential calculus class is the power rule. Using

analytic methods, one can show that the derivative of xn is nxn−1 for all positive

integers n. If however, we take this “result” as a “definition” we can abstractly define

the notion of a “derivative with respect to x” in a polynomial ring R[x]. We do so

by defining d(
∑

rixi) =
∑

irixi−1. Using polynomial rings as basic examples, we

will define algebraic definitions of differentiation in this chapter. We begin with the

notion of derivations:

Definition 2.1.1. A map d : R →M is a derivation if for every x, y ∈ R we have

1. d(x + y) = d(x) + d(y) (homomorphism of groups)

2. d(xy) = xd(y) + yd(x) (product (Leibniz) rule)
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Example 2.1.2.

• The map d : R → M with d(r) = 0 for all r is a derivation and is called the

trivial derivation. As we will soon see, there are some rings and modules which

have no nontrivial derivations.

• Let A be a ring. If R = A[x1, . . . , xn] then ∂/∂xi : R → R (partial differentia-

tion) is a derivation.

Many of the properties of derivatives one learned in calculus are also true in this

general context as well. For instance we have that d(1) = d(1 · 1) = d(1)+ d(1) which

implies that d(1) = 0. For this reason, ker d is a subring of R.

Definition 2.1.3. Suppose that φ : A → R makes R into and A-algebra. Then we

say that a derivation d : R →M is a derivation over A if φ(A) ⊂ ker d.

Thus a derivation d is a derivation over A if it kills all of A. Equally useful,

however is the equivalent fact that d is A-linear. We prove this statement as well as

other important facts about derivations in the next proposition.

Proposition 2.1.4. If R is an A algebra, then

(a) φ(A) ⊂ ker d ⇐⇒ d is A-linear.

(b) Every derivation is a derivation over Z.

(c) Two derivations over A coincide if they have the same values on a generating set

of R as an A-algebra.

Proof. (a) ⇒: Let a ∈ A and x ∈ R. Then

d(a · x) = d(φ(a)x) = φ(a)d(x) + xd(φ(a)) = φ(a)d(x) = a · d(x).

To see the other direction, just note that if d is A linear, then d(φ(a)) = d(a · 1) =

a · d(1) = 0
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(b) Let n ∈ Z then d(n) is either d(1 + · · · + 1) or d(−1− · · · − 1) which is equal to

nd(1) = 0 by linearity.

(c) Let f ∈ R. To compute d(f) suffices to write f in terms of the generators of R

and then use the Leibniz and linearity rules repeatedly. The result follows.

Note that adding two derivations R → M or multiplying a derivation by an element

in R yields another derivation. Thus the set of all derivations naturally forms an

R-module.

Definition 2.1.5. We denote the set of all derivations d : R →M over A by DerA(R,M).

This is an R-module. If M = R then we write DerA(R) for DerA(R,R) which is called

the module of derivations of R over A.

In general it is difficult to compute DerA(R,M). Below we compute it in a the

simple case of a polynomial ring over A:

Example 2.1.6. Let R = A[x1, . . . , xn]. Then ∂i = ∂/∂xi ∈ DerA(R). Furthermore,

{∂1, . . . , ∂n} form a basis of DerA(R) as an R-module.

Proof. Let d ∈ DerA(R). Then d = d(x1)∂1 + · · ·+ d(xn)∂n since these have the same

values on each xi and thus by Proposition 2.1.4, these derivations coincide. To show

linear independence, suppose that

a1∂1 + · · · + an∂n = 0

for ai ∈ R. Now just evaluate at xi to show ai = 0.

Just as adding derivations resulted in new ones, we can compose derivations with ho-

momorpisms as follows: If d ∈ DerA(R,M), and φ : A→ R is a ring homomorphism,

then d ◦ φ ∈ DerA(A, M). Also, if Φ: M → N is a homomorphism of R-modules,

then Φ ◦ d ∈ DerA(R,N).
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Because DerA(R,M) is difficult to compute, we focus our attention on the mod-

ule of differentials of R over A, denoted ΩA(R). This object, which will be defined

in the next theorem, is a universal object with respect to the set of derivations over

A. It is easy to compute if one has a reasonable presentation of R, and further-

more, DerA(R,M) is the dual of the module of differentials. Thus the computation

of DerA(R,M) reduces to computing a dual. In the following theorem, we use the

fact that any A-algebra can be written as a polynomial ring modulo some relations.

Theorem 2.1.7. (Definition of the module of differentials) Let R be an A-algebra.

(a) There exists a module ΩA(R) and a derivation dR/A : R → ΩA(R) over A having

this property: For every derivation δ : R → M over A there exists a unique R-linear

map Φ: ΩA(R)→M with δ = Φ ◦ dR/A.

R
dR/A !!

δ ""!
!!

!!
!!

! ΩA(R)

∃!Φ##""""""""

M

(b) The universal property (a) determines (ΩA(R), dR/A) uniquely up to a canonical

R-isomorphism.

Proof. (b) is clear by the standard diagram chase for universal objects.

(a) Case 1: R = A[{xi | i ∈ I}] is a polynomial ring. Set

ΩA(R) = Ω =
⊕

i∈I

R dxi

the free module with basis {dxi | i ∈ I}, and dR/A : R → Ω the map defined by

dR/A(f) =
∑

i
∂f
∂xi

dxi. This sum is finite since f only involves finitely many variables.

Notice that dR/A is well defined and dR/A(xi) = dxi. We must show that Ω has the

universal property described above.
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To this end, let δ : R →M be any derivation over A. Then there exists an R-linear

map Φ: Ω → M with Φ(dxi) = δ(xi) since Ω is free. Thus Φ ◦ dR/A and δ are both

derivations over A and agree on the xi so we have Φ ◦ dR/A = δ. Furthermore, φ

is uniquely determined since RdR/A(R) = Ω. In other words, Ω is generated by the

image of R.

Case 2: R = S/I with S = A[{xi | i ∈ I}]. Write

D = dS/A : S → Ω = ΩA(S)

where D, ΩA(S) are obtained as in the first case. Define

ΩA(R) = Ω/(SD(I) + IΩ) = Ω/(SD(I) + ID(S)),

which is an R-module.

We have an R-module, now we need the map dR/A : R → ΩA(R). Consider the

commutative diagram

S
D !!

π
$$$$

Ω

P
$$$$

R = S/I D !!###### Ω/(SD(I) + ID(S)).

The induced map D exists since I ⊂ ker(P ◦D). Since D is a derivation over A, so is

D. We define dR/A = D.

Now we prove the universal property: Let δ : R → M be any derivation over A.

Then δ ◦ π : S → M is also a derivation over A. Hence by case 1, there exists an

S-linear map Φ: ΩA(S)→M with δ ◦π = Φ◦D. Now Φ(D(I)) = δ(π(I)) = 0, hence

Φ(SD(I)) = 0. Also, Φ(ID(S)) = IΦ(D(S)) = 0 since M is an R-module and is thus
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killed by I. So now Φ induces

Φ: ΩA(S)/(SD(I) + ID(S))→M with Φ = Φ ◦ P.

Now Φ is R-linear. Also, δ ◦ π = Φ ◦D = Φ ◦ P ◦D = Φ ◦D ◦ π. Hence δ = Φ ◦D =

Φ ◦ dR/A. Furthermore, Φ is uniquely determined as RdR/A(R) = ΩA(R).

This module ΩA(R) is called the module of differentials (universal module of dif-

ferentials or module of Kähler differentials) of R over A, and dR/A is the universal

derivation of R over A.

Remark 2.1.8. The module of differentials can equivalently be defined as the R-

module with generators {d(f) | f ∈ R} subject to the relations

d(f + g) = d(f) + d(g), d(af) = ad(f), d(fg) = fd(g) + gd(f)

where a ∈ A, f, g ∈ R. We will sometimes find it more useful to use this definition.

The fact that these are equivalent is immediate from the construction in Theorem

2.1.7.

As promised, there is a natural bijection between the DerA(R,M) and the dual of

ΩA(R). In particular, given any homomorphism ΩA(R) → M we can compose with

the universal derivation to get a derivation R →M . Conversely, given any derivation,

the universal property yields an R-module homomorphism. This result and some

computational tools are outlined below.

Remark 2.1.9. (a) DerA(R,M) ∼= HomR(ΩA(R), M) in a natural way by the uni-

versal property defining the module of differentials.
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(b) If R = S/I with S = A[{xi | i ∈ I}] a polynomial ring and I = (fj | j ∈ J ), then

ΩA(R) ∼=
⊕

i∈I

Rdxi/(
∑ ∂f

∂xi
dxi | f ∈ I)

∼=
⊕

i∈I

Rdxi/(
∑ ∂fj

∂xi
dxi | j ∈ J )

where {dxi | i ∈ I} is an R-basis and denotes images in R. Moreover, dR/A(xi) is

the image of dxi in ΩA(R).

(c) ΩA(R) = RdR/A(R). (This follows from the proof of Theorem 2.1.7)

Proof. It suffices to prove (b). The first isomorphism follows from the proof of The-

orem 2.1.7 since we simply go modulo the derivatives of elements in I. To see that

the second equality holds, i.e. we can just consider the derivatives of the generators

of I, note that if s ∈ S then

∂(sfj)

∂xi
= s

∂(fj)

∂xi
+

∂(s)

∂xi
fj = s

∂(fj)

∂xi

since fj ∈ I.

2.2 Standard Properties

When we define a new object, the natural question in commutative algebra is to ask

how it behaves with respect to standard operations. For example, does it localize

nicely? How is it related to exact sequences? Fortunately, the module of differentials

localizes nicely as proven in Propositions 2.2.1, 2.2.2 and then later in Corollary 2.3.2.

We later handle exactness properties in Propositions 2.3.1 and 2.4.1.

Proposition 2.2.1. Let R be an A-algebra, W ⊂ R a multiplicatively closed subset
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of R, d = dR/A. Then ΩA(W−1R) = W−1ΩA(R) and for r ∈ R, w ∈ W ,

dW−1R/A(r/w) ∼=
wd(r)− rd(w)

w2
.

Proof. The verification that dW−1R/A is well defined is straightforward. To show that

it is a derivation is even easier. To prove the isomorphism, let d∗ be the canonical map

W−1R → ΩA(W−1R). We only need to observe that there is a unique W−1R-module

homomorphism φ : ΩA(W−1R) → W−1ΩA(R) such that φ ◦ d∗ = dW−1R/A. Now a

simple diagram chase shows the isomorphism.

This fact has an obvious corollary which we state below. The proof follows from

Proposition 2.2.1 and Remark 2.1.9

Proposition 2.2.2. If R = W−1(S/I) with S = A[{xi | i ∈ I}] a polynomial ring,

W ⊂ S a multiplicative set, I = (fj | j ∈ J ). Then

ΩA(R) ∼=
⊕

i∈I

Rdxi/(
∑ ∂fj

∂xi
dxi | j ∈ J )

and dR/A(xi) is the image of dxi. In particular if I is finite then ΩA(R) is a finite

R-module, and if I and J are finite, then ΩA(R) is a finitely presented R-module,

presented by the Jacobian matrix.

(
∂fj

∂xi

)
.

We now present a few examples.

Example 2.2.3. If R = k[x, y, z]/(x2 + y2, x2y2z2) then

Ωk(R) =
Rdx⊕Rdy ⊕Rdz

(2xdx + 2ydy, 2xy2z2dx + 2x2yz2dy + 2x2y2zdz)

Note that if char k = 2 then Ωk(R) is free.
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Example 2.2.4. Let M be an R-module, and let S = R ! M , the “trivial extension

of R by M”; that is, as an R-module S = R⊕M , and the multiplication is

(r, m) · (s, n) = (rs, rn + sm).

Then ΩR(S) ∼= M .

Proof. ΩR(S) = {d(f) | f ∈ S} modulo some relations. It is clear that d(r, m) =

d(r, 0) + d(0, m), so ΩR(S) is generated by elements of the form d(r, 0) and d(0, m).

But since we are taking derivatives with respect to R, d(r, 0) = r ·d(1, 0) = 0. Finally

we claim that ΩR(S) ∼= M . Notice M is an S-module via (r, m)n = rn. Consider

the map δ : S → M given by δ(r, m) = m. This is a derivation, and thus induces a

unique map Φ in the diagram below.

S
dS/R !!

δ ""$
$$

$$
$$

$ ΩR(S)

∃!Φ##""""""""

M

Finally, this map has an inverse given by m→ d(0, m), establishing the isomorphism.

2.3 Modules of Differentials of Ring Extensions

and Products

To properly study how the module of differentials behaves with respect to exact

sequences, it is natural to begin by studying relationships among different sets of

modules of differentials. In particular we discuss how commutative diagrams of rings

give rise to corresponding diagrams of modules of differentials. We also discuss why
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the association

R ΩA(R)

!!!"!"!"!"!"!"!"

A

φ

%%

R

dR/A

%%

is functorial. Given a commutative diagram of homomorphisms of rings,

R
ψ !! T

A

%%

!! B

%%

there exists a unique R-linear map Ψ by the universal property so that the diagram

ΩA(R) Ψ !! ΩB(T )

R

dR/A

%%

ψ !! T

dT/B

%%

commutes. Notice that Ψ(dR/A(r)) = dT/B(ψ(r)). We also have that Ψ induces a

T -linear map T ⊗R ΩA(R) → ΩB(T ) where the map is t ⊗ d(f) ,→ tΨ(d(f)). This

observation we have just collected will become useful in what follows.

An important question to ask is how the module of differentials changes if we

change the base ring. Given homomorphisms of rings A → B → R we have two

diagrams

B !! R

A

%%

A

%% R R

A

%%

!! B

%%

and the induced R-linear maps from above

R⊗B ΩA(B)→ ΩA(R) and ΩA(R)→ ΩB(R).
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To better see what is going on, we can extend these diagrams to:

ΩA(B) !! ΩA(R)

B !!

%%

R

%%

A

%%

A

%%

ΩA(R) !! ΩB(R)

R

%%

R

%%

A

%%

!! B

%%

Proposition 2.3.1. Let A → B → R be ring homomorphisms. Then the induced

sequence

R⊗B ΩA(B)→ ΩA(R)→ ΩB(R)→ 0

is exact.

Proof. We prove this by looking at the generators and relations. By Remark 2.1.8,

ΩA(R) is generated by d(f), f ∈ R subject to certain relations. But ΩB(R) is gen-

erated by the same elements only with the added relation that d(bf) = bd(f) for all

b ∈ B. Thus the map ΩA(R) → ΩB(R) is surjective. The kernel of this map can

be seen to be generated by the set of all d(b) with b ∈ B. This is clear because

the only way something could be zero in ΩB(R) but not in ΩA(R) is if it is due to

the new relation d(B) = 0. Finally, the image of the lefthand map is the R-module

generated by d(B) as ΩA(B) as a B-module is generated by d(B) so we have proved

exactness.

As an application of this exact sequence, we prove the following result which

concerns different localizations of the module of differentials.

Corollary 2.3.2. Let A
φ→ R be an algebra, V ⊂ A, W ⊂ R multiplicative subsets

with φ(V ) ⊂ W . Then

ΩV −1A(W−1R) ∼= ΩA(W−1R) ∼= W−1ΩA(R)
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via the natural maps.

Proof. The second isomorphism is Proposition 2.2.1. The first isomorphism follows

from the previous proposition since the maps A→ V −1A→ W−1R induce the exact

sequence

W−1R⊗ ΩA(V −1A)→ ΩA(W−1R)→ ΩV −1A(W−1R)→ 0

and ΩA(V −1A) ∼= V −1ΩA(A) = 0.

This last corollary gives us an even stronger statement about localization of the

module of differentials. It tells us that looking at the modules of differentials over A

and V −1A are isomorphic. Next we would like to investigate the relationship between

tensor products and the module of differentials.

Proposition 2.3.3. a) Let A → A′, A → R be algebras. There is an A′ ⊗A R-

isomorphism ΩA′(A′ ⊗A R) ∼= A′ ⊗A ΩA(R) with d(a′ ⊗ r) ,→ a′ ⊗ d(r).

b) Let A→ R1, A→ R2 be algebras, T = R1 ⊗A R2. There is a T -isomorphism

ΩA(T ) ∼= R1 ⊗A ΩA(R2)⊕R2 ⊗A ΩA(R1)

with

d(r1 ⊗ r2) ,→ r1 ⊗ d(r2) + r2 ⊗ d(r1).

Proof. a): There are two ways of proving this. One could argue using the universal

property of the module of differentials, but we present a proof using Remark 2.1.9.

Indeed, if R = A[{xi}]/(fj) as before, then A′ ⊗A R = A′[{xi}]/(fj) and

ΩA′(A′ ⊗A R) =
⊕

(A′ ⊗A R)dxi/(&)
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where & is as in Remark 2.1.9. But by comparison,

A′ ⊗ ΩA(R) = A′ ⊗
⊕

Rdxi/(&) ∼=
⊕

(A′ ⊗A R)dxi/(&)

proving the desired isomorphism.

(b): By the universal property of the tensor product, there is an A-linear map

δ : T = R1 ⊗A R2 → R1 ⊗A ΩA(R2)⊕R2 ⊗A ΩA(R1)

with

δ(r1 ⊗ r2) ,→ r1 ⊗ dR2/A(r2) + r2 ⊗ dR1/A(r1)

since the dRi/A are A-linear. Now δ is a derivation over A since the dRi/A are. Hence

by the universal property of the module of differentials we have a T -linear map

Φ: ΩA(T )→ R1 ⊗A ΩA(R2)⊕R2 ⊗A ΩA(R1)

with Φ(dT/A(r1 ⊗ r2)) = r1 ⊗ dR2/A(r2) + r2 ⊗ dR1/A(r1).

On the other hand, the maps A → R1 → T and A → R2 → T combined with

obvious facts about direct sums yield the induced map

Ψ: R1 ⊗A ΩA(R2)⊕R2 ⊗A ΩA(R1) ∼= T ⊗R2 ΩA(R2)⊕ T ⊗R1 ΩA(R1)→ ΩA(T )

with 1⊗ dR2/A(r2) ,→ dT/A(1⊗ r2) and 1⊗ dR1/A(r2) ,→ dT/A(r1 ⊗ 1). It follows that

Φ ◦Ψ = Ψ ◦ Φ =id.

Remark 2.3.4. The same works for any finite collection of A-algebras R1, . . . , Rs
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and T = R1 ⊗A · · · ⊗A Rs. We have

ΩA(T ) ∼=
⊕

j

(
⊗

A
i&=j

Rj)⊗A ΩA(Ri)

∼=
⊕

(T ⊗A ⊗RiΩA(Ri)).

This remark gives us a new way to compute Ω for new classes of rings. In particular

we have the following proposition.

Proposition 2.3.5. Let A→ R be a homomorphism of rings and let T = R[x1, . . . , xn].

Then

ΩA(T ) = T ⊗R ΩA(R)⊕
⊕

i

Tdxi.

Proof. Write T ′ = A[x1, . . . , xn]. Then note that T = R⊗ T ′. Thus

ΩA(T ) = T ⊗R ΩA(R)⊕ T ⊗T ′ ΩA(T ′)

= T ⊗R ΩA(R)⊕ T ⊗T ′

⊕

i

T ′dxi

= T ⊗R ΩA(R)⊕
⊕

i

Tdxi.

Since we will have occasion to use it, we state without proof the relationship

between module of differentials and direct limits. The reader may object that we have

not explicitly given a directed set in the statement, but to do so would complicate the

issue and take away from the point of the theorem. What is important to understand

is that direct limits commute with ΩA(−). A complete statement and proof can be

found in [1].

Proposition 2.3.6. Let T = lim−→Ri. There is a T -isomorphism

ΩA(T ) ∼= lim−→ (T ⊗Ri ΩA(Ri)) .
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2.4 The Conormal Sequence

In this last section of the general introduction to the module of differentials we de-

velop what is perhaps the most useful tool in their study. This is called the conormal

sequence and gives a refinement of the exact sequence in Proposition 2.3.1.

Consider a set of algebras A → R → T = R/I. Then by Proposition 2.3.1 we

obtain an exact sequence

T ⊗R ΩA(R)→ ΩA(T )→ ΩR(T )→ 0.

But the first map is surjective since ΩR(T ) = 0. Thus we have an exact sequence of

the form

T ⊗ ΩA(R)
ψ→ ΩA(T )→ 0.

We now compute the kernel of the map ψ. Notice that

ΩA(T ) = ΩA(R/I) = ΩA(R)/(IΩA(R) + Rd(I)).

Thus one sees that the kernel of ψ is generated by the image of dR/A(I). This is also

the image of the map I/I2 → T ⊗R ΩA(R) given by δ(f + I2) = 1 ⊗ d(f). This

map is well defined since by the Leibniz rule, d(I2) ⊂ IΩA(R) which maps to zero in

T ⊗R ΩA(R) ∼= ΩA(R)/IΩA(R). The map δ is T -linear since for r ∈ R and f ∈ I we

have

δ(rf + I2) = 1⊗ d(rf) = 1⊗ (rdf + fdr) = 1⊗ rdf = rδ(f + I2).

We have just proven
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Proposition 2.4.1. For A→ R → T = R/I,

I/I2 δ→ T ⊗R ΩA(R)→ ΩA(T )→ 0

is an exact sequence of T -linear maps. This is called the conormal sequence.

We can sharpen this result by noticing that δ((I ∩ A)R) = 0 and obtain

Corollary 2.4.2. With notation as in Proposition 2.4.1 there is an induced exact

sequence

I/((I ∩ A)R + I2)
δ→ T ⊗R ΩA(R)→ ΩA(T )→ 0

The left-hand map δ need not be injective. In fact, its kernel can be nontrivial in

very simple cases. There is a necessary and sufficient condition, however, which says

when the conormal sequence is splits exact. First we prove a lemma.

Lemma 2.4.3. Let ψ : R → T be a homomorphism of A-algebras, I a T -ideal with

I2 = 0 and ∆: R → I an A-linear map. Then ∆ is a derivation over A if and only

if (ψ + ∆): R → T is a homomorphism of A-algebras.

Proof. Let x, y ∈ R. Then (ψ + ∆)(xy) = ψ(x)ψ(y) + ∆(xy), and

(ψ + ∆)(x) · (ψ + ∆)(y) = ψ(x)ψ(y) + ψ(x)∆(y) + ψ(y)∆(x)

since I2 = 0. The result follows.

Proposition 2.4.4. The T -linear map δ in 2.4.1 has a left inverse (i.e. the sequence

is split injective) if and only if the natural map of A-algebras π : R/I2 → R/I = T

has a right inverse.

Proof. Note that since dR/A(I2) ⊂ IΩA(R), and since tensoring with R/I always kills
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all of I, we have

R/I ⊗
R/I2

ΩA(R/I2) ∼= R/I ⊗
R/I2

ΩA(R)

(RdR/A(I2) + I2ΩA(R))
∼= R/I ⊗

R
ΩA(R).

So δ does not change if we replace R with R/I2, and neither does π. So we may

assume that I2 = 0. We now begin the equivalences.

π : R → R/I has a right inverse

⇐⇒ there exists a homomorphism of A-algebras γ : R/I → R

with πγ = idR/I

⇐⇒ there exists a homomorphism of A-algebras τ : R → R with τ|I = 0

and (idR−τ)(R) ⊂ I

⇐⇒ there exists a derivation ∆: R → I over A with ∆|I = idI

(We can let ∆ = idR−τ by Lemma 2.4.3 since I2 = 0 and − id : R → R

is a homomorphism of A-algebras.)

⇐⇒ there exists an R-linear map Φ: ΩA(R)→ I with Φ(dR/A(f)) = f

for all f ∈ I (from the universal property)

⇐⇒ there exists a T -linear map Ψ: T ⊗A ΩA(R)→ I = I/I2 = I ⊗ T

with Ψ(1⊗ dR/A(f)) = f + I2 for all f ∈ I

⇐⇒ δ has a left inverse.
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Chapter 3

Field extensions and the Module of

Differentials of Local Rings

Let k ⊂ K be a field extension. We can consider the module of differentials Ωk(K).

This is a K-module and hence a K-vector space. Therefore we can ask what is

dimK Ωk(K)? As it turns out, the answer to this question is the transcendence degree

(or in nonzero characteristic, what is called the p-degree) of the extension. Addition-

ally the notion of separable and inseparable extensions is crucial to studying Ωk(K).

Not surprisingly, a proper study of of the module of differentials Ωk(K) requires a

good deal of field theory, but interestingly enough, a proper study of field extensions

is actually dependent on the module of differentials! In this chapter we discuss the

basic tools needed to compute the module of differentials for field extensions, and

along the way, state several results in field theory.

Due to the technical nature of the proofs, especially in characteristic p, we will

omit some proofs. A good source for the field theory discussed here is in Appendix

A.1 of [1] and also in [6].
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3.1 Basic Definitions

We begin by defining transcendence bases and their analogue in positive characteristic

called a p-basis. We will then use these tools to prove statements about the module

of differentials. Throughout this section, k ⊂ K will be a field extension.

Definition 3.1.1. A subset U ⊂ K is a transcendence basis of K over k if U is

algebraically independent over k and k(U) ⊂ K is algebraic.

Example 3.1.2.

a) If k is a field, then {x} is a transcendence basis for k ⊂ k(x).

b) If k is a field, then {x} is a transcendence basis for

k ⊂ Quot(k[x, y]/(y2 − x)).

The following proposition has an analogous statement in linear algebra but the

statement here is much stronger. It proves the existence of transcendence bases for

field extensions as we show the existence of a vector space basis.

Proposition 3.1.3. (a) Let V ⊂ W be (possibly empty) subsets of K so that V

is algebraically indpendent over k and k(W ) ⊂ K is algebraic. Then there exists a

transcendence basis U of K over k with V ⊂ U ⊂ W .

(b) Let U,U ′ be transcendence bases of K over k. Then for every u′ ∈ U ′ there

exists u ∈ U so that U ′ \ {u′} ∪{ u} is a transcendence basis of K over k.

(c) Any two transcendence bases of K over k have the same cardinality.

It follows that any field extension k ⊂ K has a transcendence basis and that

the cardinality of any such basis only depends on the field extension itself. This

cardinality is called the transcendence degree of K over k, trdegk K. Recall that for

towers of algebraic extensions, the degree of the extensions was multiplicative. There

is a similar result for transcendence degree, as shown in the following corollary which

has a simple proof.
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Corollary 3.1.4. Let k ⊂ K ⊂ L be field extensions. Then

trdegk L = trdegk K + trdegK L.

Proof. If U is a transcendence basis of K over k and V a transcendence basis of L

over K, then clearly U ∪ V is a transcendence basis of L over k.

For a field extension of a field of characteristic p > 0 we give a definition of another

type of basis for a field extension. Recall that if k ⊂ K are fields of characteristic p

then kKp = {
∑

aix
p
i | ai ∈ k, xi ∈ K} is a subfield of K.

Definition 3.1.5. Let k be a field with char k = p > 0. A subset U ⊂ K is p-

independent over k if

Up = {uν1
1 · · ·uνn

n | n ∈ N, ui ∈ U, 0 ≤ νi ≤ p− 1}

is linearly independent over kKp. We say that U is a p-basis of K over k if Up is a

basis of K over kKp.

Example 3.1.6.

(a) Let k = Z/pZ ⊂ k(x) = K. Then {x} is a p-basis of K over k. Indeed,

Up = {1, x, . . . , xp−1} and kKp = k(xp), so it is immediate that Up spans K over kKp

and is linearly independent over kKp.

(b) Similarly, if k = Z/pZ ⊂ k(x, y) = K then {x, y} is a p-basis for K over k.

An analogous, (but more technical) version of Proposition 3.1.3 exists for p-bases,

and can be used to show that p-bases always exist. The cardinality of such a basis

is called the p-degree. Notice that for a field extension in positive characteristic p

we now have two cardinalities - trdegk K and p-degk K. When these values are finite

they will be important in computing dimK Ωk(K) as we will later see.
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We now recall the notion of a separable algebraic field extension, something that

is well studied in any field theory course. We take a different approach, however, and

study the relationship to the module of differentials.

Definition 3.1.7. A field extension k ⊂ K is called separable algebraic if it is al-

gebraic and for any α ∈ K, the minimal polynomial of α over k has no repeated

roots.

If k is a field with the property that all algebraic extensions of k are separable

algebraic then we say that k is perfect. Examples of perfect fields include all fields of

characteristic zero, and finite fields.

Separable algebraic field extensions are very nice to work with. Since they are

algebraic, trdegk K = 0 and the separability turns out to be a very important property

as well. The following proposition computes the module of differentials for separable

algebraic extensions.

Proposition 3.1.8. Let k ⊂ K ⊂ L be field extensions with K ⊂ L separable

algebraic. Then Ωk(L) ∼= L⊗K Ωk(K) via the natural L-linear map.

Proof. We have L = ∪Li = lim−→Li, where the Li are finite field extensions of K

contained in L. Since direct limits are compatible with both tensor products and

modules of differentials, we may assume that K ⊂ L is finite separable, hence simple

(L = K[α]). Write L = K[α] = K[x]/(f(x)) with f ′(x) 0= 0 in L. Now by Proposition

2.3.5 and the conormal sequence, we see that

Ωk(L) ∼= L ⊗
K[x]

Ωk(K[x])/(im δ) ∼= L⊗
K

Ωk(K)⊕ Ldx/(&, f ′(x)dx)

and since f ′(x) 0= 0 it is a unit, the last factor is 0. Thus we have Ωk(L) ∼= L ⊗K

Ωk(K).

Separable algebraic field extensions are convenient in the theory of differentials, as
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if k ⊂ K is separable algebraic, then Ωk(K) = 0. This is clear from the proposition

by applying it to the tower k ⊂ k ⊂ K. We will later see that this condition is

equivalent to the fact that k ⊂ K is separable algebraic.

3.2 Main Results for Field Extensions

We are now ready to state many of the main results of this section. We begin with a

“formula” for the dimension of Ωk(K):

Theorem 3.2.1. If k ⊂ K is any field extension then

dimK Ωk(K) =






trdegk K if char k = 0

p-degk K if char k = p > 0

Note that this theorem is true for all field extensions. One might wonder when

the two numbers on the right are equal. To answer this question, we introduce a

generalization of separable algebraic extensions.

Definition 3.2.2. A field extension k ⊂ K is called separably generated if there exists

a transcendence basis U of K over k so that k(U) ⊂ K is separable algebraic. Such U

is called a separating transcendence basis. A field extension k ⊂ K is called separable

if k ⊂ K ′ is separably generated for every finitely generated field extension k ⊂ K ′

with K ′ ⊂ K.

Note that in characteristic zero all algebraic extensions are separable, thus all

extensions are separably generated and separable. It is not immediate at the moment

whether separably generated implies separable or vice versa. It is in fact true that

separably generated implies separable, and the converse is true for finitely generated

field extensions, which we state below.

Example 3.2.3.
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Let char k = p > 0, K = k(x). Then {x} is a separating transcendence basis.

Note that {xp} is another transcendence basis, but not separating, since the minimal

polynomial of x in k(xp)[y] is yp − xp which is purely inseparable.

Proposition 3.2.4. Let k ⊂ K ⊂ L be field extensions with K ⊂ L finitely generated.

Then

dimL Ωk(L) ≥ dimK Ωk(K) + trdegK L.

We are now ready to state necessary and sufficient conditions for Ωk(K) = 0 for

a field extension k ⊂ K.

Theorem 3.2.5. Let k ⊂ K be a finitely generated field extension. Then

1. Ωk(K) = 0 if and only if k ⊂ K is separable algebraic.

2. p-degk(K) ≥ trdegk(K).

It would seem that these two statements are very different. The first is about

derivatives, while the second can be stated completely in terms of field theory. It is

the relationship between these two notions which is truly remarkable. We close this

section by stating the results which answer the questions raised earlier in this section.

In particular they give a characterization separable extensions and also says when the

two numbers trdegk K and p-degk K are equal.

Theorem 3.2.6. The following are equivalent for a finitely generated field extension

k ⊂ K:

(1) dimK Ωk(K) = trdegk K

(2) p-degk K = trdegk K if char k = p > 0

(3) some p-basis is algebraically independent over k, if char k = p > 0

(4) every p-basis is a separating transcendence basis of k ⊂ K

(5) k ⊂ K is separably generated.
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Proposition 3.2.7. Let k ⊂ K be a field extension.

(a) k ⊂ K separably generated ⇒ separable.

(b) If k ⊂ K is finitely generated: k ⊂ K separably generated ⇐⇒ separable.

3.3 Modules of Differentials of Local Rings

Having treated the case of field extensions, in this section we will prove some facts

about the module of differentials of local k-algebras. In particular, we will compute

the minimal number of generators of certain modules of differentials in terms of

the transcendence degree of certain field extensions. This will naturally lead to a

discussion about ramification and the singular locus.

It is not currently clear that local k-algebras and separable field extensions should

have any relationship. This becomes transparent in this section because of our use

of the Cohen structure theorem, which is necessary for most of the results in this

section. We omit the proof of this theorem, referring the reader to [8]. First we recall

the definition of a coefficient ring.

Definition 3.3.1. Let (R,m, K) be a local ring with residue field K, p = char K ≥ 0.

A coefficient ring of R is a subring R0 ⊂ R so that (R0, m0) is a Noetherian complete

local ring with m0 = pR0 and R0/m0 = K.

We note that this coefficient ring is a field if and only if charK = char R in which

case it is called a coefficient field. Furthermore, if (R,m, K) has a coefficient field,

then the map R → K has a right inverse φ : K → R, namely the isomorphism between

K and the coefficient field of R.

Theorem 3.3.2. (Cohen’s Structure Theorem) Let R be a complete local ring with

residue field K and π : R → K the natural map. Let k ⊂ R be any field so that

π(k) ⊂ K is separable. Then R has a coefficient field containing k.
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Remark 3.3.3. (a) k as in Theorem 3.3.2 always exists if char R = charK. One

can take the prime field Fp, which is perfect, hence makes π(k) ⊂ K separable.

The following theorem is crucial for the rest of this section, and for the results

of Eisenbud and Mazur. The theorem gives a relationship between trdegk K and the

minimal number of generators of the module of differentials, a useful invariant. Notice

that this is the first time that the invariants from dimension theory are appearing in

this paper. We use edim to denote the minimum number of generators of the maximal

ideal - the embedding dimension.

Theorem 3.3.4. Let k be a field, (R,m) a local k-algebra essentially of finite type

with K = R/m, and assume k ⊂ K is separable. Then

µ(Ωk(R)) = edim R + trdegk K.

Proof. The ring R/m2 is complete and local. Since k ⊂ K is separable, Theorem

3.3.2 shows that R/m2 has a coefficient field containing k. Equivalently, the natural

map π : R/m2 → K has a right inverse as a map of k-algebras. Thus Proposition

2.4.4 gives an exact sequence

0→ m/m2 → K ⊗R Ωk(R)→ Ωk(K)→ 0.

Now use the fact that these are all K vector spaces, dimK K ⊗M = µ(M), and that

dimK Ωk(K) = trdegk K. Thus since we have a short exact sequence,

µ(Ωk(R)) = trdegk K + µ(m) = trdegk K + edim R.

There is also a slightly more general version of this theorem, where we do not

assume that the rings are k-algebras.

Corollary 3.3.5. Let (A, n) → (R,m) be a local map making R an A-algebra es-
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sentially of finite type and assume the residue field extension k ⊂ K is separable.

Then

µ(ΩA(R)) = µ(m/Rn) + trdegk K.

Proof. Replacing A → R by k = A/n → R/Rn we are in the situation of Theorem

3.3.4. Then by Proposition 2.3.3(a)

Ωk(R/Rn) = Ωk(A/n⊗A R) = Ωk(k ⊗A R) = k ⊗A ΩA(R)

showing that µ(Ωk(R/Rn)) = µ(ΩA(R)). The result then follows from Theorem 3.3.4.

We close this section by discussing the very powerful Jacobian Criterion for de-

termining when a ring is regular. To do this, we need to recall the notion of Fitting

ideals. These are treated nicely in chapter 20 of [1], and we will state without proof

some of the basic properties.

Definition 3.3.6. Let Rs φ→ Rn → M → 0 be exact. Then define the ith Fitting

ideal of M , Fitti(M) = In−i(φ) the ideal generated by the (n− i)× (n− i) minors of

φ.

We recall some basic properties:

Proposition 3.3.7.

(a) The ideals Fitti(M) depend only on M and not on the matrix φ.

(b) The ideals Fitti(M) form an increasing chain of ideals

(c) V (Fitti(M)) = {q ∈ Spec(R) | µ(Mq) > i}

(d) V (Fitt0(M)) = Supp(M).

If R is an algebra essentially of finite type over a Noetherian ring A and M = ΩA(R)

then M is finitely presented and the matrix φ can be obtained from a Jacobian matrix
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(see Proposition 2.2.2). One calls

VK(R/A) = Fitt0(ΩA(R))

the Kähler different of R over A or the Jacobian ideal. We now state the Jacobian

Criterion for regularity, which is extremely useful in determining whether a local ring

is regular.

Theorem 3.3.8. (Jacobian Criterion) Let k be a field, (R,m) a local k-algebra essen-

tially of finite type with K = R/m, write D = dim R + trdegk K and assume k ⊂ K

is separable. The following are equivalent:

(1) R is regular.

(2) Ωk(R) is free of rank D

(3) FittD(Ωk(R))) = R.

In this case, k ⊂ L = Quot(R) is a separable field extension and trdegk L = D.

Theorem 3.3.9. Let K be a perfect field and R a local k-algebra essentially of finite

type. Assume R is reduced or char k = 0. Then R is regular if and only if Ωk(R) is

free.

Example 3.3.10.

Let R = C[x, y, z]/(x2 − yz). Then ΩC(R) is presented by the Jacobian matrix

(2x,−y,−z), and thus FittD(ΩC(R)) ∼= (x, y, z). Hence by the Jacobian criterion, RP

is a regular local ring for all primes P not containing (x, y, z). Geometrically, this

says that the variety corresponding to R is regular at every point except at the origin.

30



Chapter 4

Evolutions and the

Eisenbud-Mazur Conjecture

We now arrive to the main part of this paper, which concerns the Eisenbud-Mazur

Conjecture. Naturally a statement in number theory, the conjecture concerns the

question of the existence of nontrivial evolutions of certain algebras. Evolutions,

defined below, arise naturally in the study of Hecke algebras, as in the work of Wiles,

Taylor-Wiles and Flach [9, 10, 3] related to the proof of Fermat’s Last Theorem.

In [2], Eisenbud and Mazur show that this problem is equivalent to one concerning

symbolic squares in regular rings. Particularly, they ask whether a symbolic square

of an unmixed ideal I contains a minimal generator of I. They conjecture this is

never the case in characteristic zero, and are able to prove it in many situations. This

section incorporates results of Eisenbud, Huneke, Hübl, Mazur, and Ribbe related to

this question [5, 2, 4], and is an attempt to explain well the current status of the

conjecture.

31



4.1 Definitions and Preliminary Results

Definition 4.1.1. Let A be a ring and let T be a local A-algebra essentially of finite

type (a localization of a finitely generated A-algebra). An evolution of T over A is

a local A-algebra R essentially of finite type and a surjection R → T of A-algebras

inducing an isomorphism

ΩA(R)⊗R T → ΩA(T ).

The evolution is called trivial if R → T is an isomorphism.

We note the relationship between this definition and the conormal sequence. In-

deed, if T = R/I, then we have an exact sequence

I/I2 δ→ ΩA(R)⊗R T → ΩA(T )→ 0.

Thus a surjection R → T is an evolution if and only if the image of δ is 0. One might

ask if any nontrivial evolutions exist. The answer is yes, and the following proposition

provides a large source of examples.

Proposition 4.1.2. Let f ∈ S := A[x1, . . . , xn](x1,...,xn) and let I =: ∂(f) the ideal

generated by the partial derivatives of f . Then R = S/I is an evolution of T =

S/(I, f), nontrivial when f is not contained in I.

Proof. Note that the kernel of the map R → T is exactly K = (I, f)/I, so we must

show that δ(K) = 0. Since I = 0 in K we just need to show that δ(rf) = 0 for all

r ∈ R. Notice

δ(rf) = 1⊗ rd(f) + 1⊗ fd(r) = r ⊗ d(f) + f ⊗ d(r) = 0 ∈ S/(I, f)⊗ ΩA(S/I)

where we see the first term is 0 since d(f) =
∑ ∂f

∂xi
dxi ∈ IΩA(S/I) (by Theorem

2.1.7) and the second since f = 0 in T .
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This proposition may lead us to believe that nontrivial evolutions are every-

where, but for example, if we work over a field of characteristic zero, and f is quasi-

homogeneous, then by the Euler formula, f is always contained in the ideal of partial

derivatives. That is, f ∈ ∂(f). We prove this in the following proposition and remark.

Proposition 4.1.3. Let f ∈ C[x1, . . . , xn] be a homogeneous polynomial of degree k.

Then

k · f =
∑

xi
∂f

∂xi

Proof. First suppose f is a monomial. Then we can write f as

xe1
1 · · ·xen

n

with
∑

ei = k. Then
∑

xi
df

dxi
=

∑
eif = k · f.

The result for general f follows by writing f as a sum of monomials and applying

this result repeatedly.

Remark 4.1.4. This result holds more generally, when f is quasi-homogeneous, that

is, if it is possible to assign strictly positive weights to the variables so that f becomes

homogeneous. If xi has weight wi then the formula is

deg(f) · f =
∑

wixi
df

dxi
.

Further, it is straightforward to show that for all f ∈ C[x1, . . . , xn] we have

f ∈
√

∂(f) so if I is a radical ideal then the construction in Proposition 4.1.2 will

always produce a trivial evolution. In fact, there are no known examples of nontriv-

ial evolutions of any reduced algebra T in equi-characteristic zero. To put this into

perspective, consider the following question:
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Question 4.1.5. Suppose f ∈ C[[x1, . . . , xn]] is a power series without constant term

over the complex numbers, and I is the ideal of the reduced singular locus of f , that

is, I is the radical of the ideal generated by the partial derivatives of f . Does it follow

that f ∈ (x1, . . . , xn)I?

Although it seems incredibly elementary, this is a quite difficult question to answer.

It is conjectured that the answer is “yes” and we will later see that this question is

equivalent to asking whether reduced local C algebras have nontrivial evolutions.

Hence to find examples of nontrivial evolutions of reduced algebras in character-

istic zero, we cannot hope to use Proposition 4.1.2. In this vein, we now attempt to

find those reduced algebras T who have no nontrivial evolutions. This is a lofty goal,

and will eventually culminate with the Eisenbud Mazur conjecture. As a first step

we show that an algebra T has only trivial evolutions if and only if the map δ in the

conormal sequence has a special property.

Definition 4.1.6. Let T be a ring, and φ : M → N an epimorphism of T -modules.

Then φ is minimal if there is no proper submodule M ′ ⊂M such that φ(M ′) = N.

Proposition 4.1.7. (Lenstra) Let A be a Noetherian ring and let T be a local A-

algebra, essentially of finite type over A. Every evolution of T is trivial if and only

if for some (equivalently all) presentations T = S/I, where S is a localization of a

polynomial ring over A, the map

δ : I/I2 → ker(T ⊗S ΩA(S)→ ΩA(T ))

induced by the universal derivation is minimal.

Proof. Let T = S/I be any presentation of T where S is a localization of a polynomial

ring in finitely many variables over A. Let J be an ideal of S with J ⊂ I. We make

the following claim.
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Claim: The natural surjection φ : S/J → S/I = T is an evolution if and only if

δ carries (J + I2)/I2 onto the same image as I/I2.

Proof of Claim: ⇒ : We need to show that δ((J + I2)/I2) = δ(I/I2). The

inclusion ⊂ is obvious, so we prove the other. Let x ∈ I. We need to find some

z ∈ J + I2 so that δ(z + I2) = δ(x + I2). This amounts to finding a z such that

1⊗ dz = 1⊗ dx

where the tensor product is taken in T ⊗S ΩA(S). We know that φ : S/J → S/I = T

is an evolution and that kerφ = I/J with

(I/J)/(I/J)2 = I/(I2 + J).

Hence δ(I/(I2 + J)) = 0 where

δ : I/(I2 + J)→ T ⊗S/J ΩA(S/J).

Thus we know that 1⊗dx = 0 in T ⊗S/J ΩA(S/J). If 1⊗dx = 0 in the larger module

T ⊗S ΩA(S) then we can just set z = 0. If not, then this means that x ∈ J so we are

done.

⇐ : Suppose that δ(I/I2) = δ((J +I2)/I2). We examine the map δ defined above.

We need to prove that the image of δ is 0. Let x ∈ I, so δ(x + (I2 + J)) = 1⊗ dx in

T ⊗S/J ΩA(S/J). But then looking at 1⊗dx in T ⊗S ΩA(S) we see that 1⊗dx = 1⊗dj

for some j ∈ J which is zero in T ⊗S/J ΩA(S/J). This completes the proof of the

claim.

Assuming the claim, from Nakayama’s Lemma, (since T is local, Noetherian)

J = I ⇐⇒ (J + I2) = I ⇐⇒ (J + I2)/I2 = I/I2.
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So δ is minimal if and only if T has no nontrivial evolution of the form S/J . We are

done once we prove the minimality of δ is independent of the presentation. For then,

we can write any evolution as S/J .

The family of presentations is filtered, meaning that any two presentations are

simultaneously dominated by a third one. To this end, we see that it suffices to show

that if T = S/I is a presentation and S ′ is a localization of the polynomial ring S[x],

and S ′/I ′ is a presentation extending T = S/I in the obvious way, then δS is minimal

iff δS′ is minimal.

Let g ∈ S be an element with the same image in T as x. Thus x− g ∈ I ′. If x− g

is not zero, we can just rename our variable to be x − g, so we assume g = 0. Then

we have x ∈ I ′ so that I ′/I ′2 = I/I2 ⊕ Tx since x2 = 0 ∈ I ′/I ′2. Finally, note that

im(δS′) = Tdx ⊕ im(δS).

Suppose that δS is minimal. Then let M be a submodule of I ′/I ′2 such that

δS′(M) = Tdx ⊕ im(δS). But M ⊂ I ′/I ′2 = I/I2 ⊕ Tx so write M = M1 ⊕ M2

where M1 ⊂ I/I2 and M2 ⊂ Tx. But then δS(M1) = im(δS) so since δS is minimal,

M1 = I/I2. But then M2 is a subset of Tx, say aTx. But then by Nakayama’s lemma,

aTdx = Tdx if and only if a = 1 so M2 = Tx and M = I ′/I ′2.

Conversely, suppose δS′ is minimal and that M ⊂ I/I2 is such that δS(M) =

im(δS). Then δS′(M ⊕ Tx) = Tdx⊕ im(δS) = im(δS′), so M = I/I2.

Now we can begin studying A-algebras R which are evolutionarily stable; i.e. all

evolutions are trivial. Mazur raised the following question in [2]

Question 4.1.8. Let k be a field of characteristic 0 or a discrete valuation ring

of mixed characteristics. Is it true that every reduced, flat, local algebra, which is

essentially of finite type over k, is evolutionarily stable?

This question forms the crux of this paper. One form of the Eisenbud-Mazur

conjecture is that the answer to the above question is “yes”. As we shall shortly see,
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once we further unwrap what it means for an algebra to have no nontrivial evolutions,

this conjecture can be stated quite beautifully in terms of commutative algebra. The

following chain of results will culminate in the statement of the Eisenbud-Mazur

conjecture in its classic form. We take the first result from Hübl in [4].

Corollary 4.1.9. Let A be a Noetherian ring and T a local algebra essentially of

finite type over A. Then the following are equivalent:

(a) The algebra T is evolutionarily stable

(b) If (S, m) is a local algebra, essentially of finite type over A and if I ⊂ S is an

ideal with T = S/I and if f ∈ I with D(f) ∈ I for all D ∈ DerA(S), then

f ∈ m · I.

(c) There exists a local algebra A→ (S, m), essentially of finite type, and an ideal

I ⊂ S with R = S/I such that, if f ∈ I with δ(f) ∈ I for all δ ∈ DerA(S), then

f ∈ m · I.

Proof. Suppose T is evolutionarily stable and the A-algebra (S, m) is defined as above

with I ⊂ S so that f is as in (b) but f /∈ m · I. Then there exists some J ⊂ I such

that J 0= I but (J, f) = I. Set R = S/J . Then the canonical map R → T is a

nontrivial evolution since d(f) ∈ IΩA(S) as in the proof of Proposition 4.1.2. This

shows that (a) implies (b).

Next suppose we have a nontrivial evolution ε : S/J → S/I = T with J ⊂ I then

for J ⊂ J ′ " I, S/J ′ will still be a nontrivial evolution. Thus we assume that I/J

is cyclic with I/J ∼= f · K where K = S/m and f ∈ I. Then clearly f is a minimal

generator so f /∈ m · I.
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Now

ΩA(S/I) ∼=
ΩA(S)

(IΩA(S) + Sd(I))
∼=

ΩA(S)

(JΩA(S) + fΩA(S) + Sd(I))

by Theorem 2.1.7. And by assumption, since we have an evolution,

ΩA(T ) ∼= T ⊗ ΩA(S/J) ∼= ΩA(
S

J
)⊗ S

I
=

ΩA(S/J)

fΩA(S/J)

∼=
ΩA(S)

(JΩA(S) + Sd(J) + fΩA(S))
.

Thus since we have an evolution, δ(f) must be zero in ΩA(T ), where δ(f) = 1⊗df .

Hence

df ∈ JΩA(S) + SD(J) + fΩA(S) = IΩA(S) + SD(J).

Thus there exist gi ∈ J, ri ∈ S so that df −
∑

ridgi = η ∈ IΩA(S). Then if h =

f −
∑

rigi we have that I/J = h · K still, so h /∈ m · I and also

dh = df −
∑

ridgi −
∑

gidri = η −
∑

gidri ∈ IΩA(S).

Thus for all derivations D, D(h) ∈ I. Hence (b) implies (a).

The equivalence of conditions (b) and (c) follows from an argument similar to the

one used in Proposition 4.1.7.

The above result shows that there is some relationship between minimal generators

of an ideal I (those elements in I \mI) and evolutions of R/I. The following theorem

will make this more explicit by using the symbolic square.

Definition 4.1.10. If I is an ideal of the ring R then we define the nth symbolic

power of I to be the ideal

I(n) =
{
f ∈ R | f ∈ In

Q ⊂ RQ for all minimal primes Q of I
}

.
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Example 4.1.11.

If P is a prime ideal, then P (n) = R ∩ PRP , or equivalently,

P (n) = {y ∈ R | there exists x /∈ P with xy ∈ P n}.

In the following theorem, we recall that if k is a field, and T is a k-algebra, then T

is generically separable if the residue field extension k ⊂ k(P ) is separable for each

minimal prime ideal P of T .

Theorem 4.1.12. Let k be a field. Let (S, m) be a localization of a polynomial ring

in finitely many variables over k and let I be an ideal of S. If T : = S/I is reduced

and generically separable over k, then the kernel of

δ : I/I2 → T ⊗S Ωk(S)

is I(2)/I2 and every evolution of T is trivial iff I(2) ⊂ mI.

We begin the proof with two simple lemmas.

Lemma 4.1.13. Let R be an A-algebra, with I and R-ideal. Then f ∈ I(2) implies

f ∈ I and D(f) ∈ I for all D ∈ DerA(R).

Proof. Suppose f ∈ I(2). Then there exists some nonzero divisor s on I so that

sf ∈ I2. Since s is a nonzero divisor on I we have f ∈ I and taking a derivative, we

see that

fD(s) + sD(f) ∈ D(I2) ⊂ I.

But f ∈ I so sD(f) ∈ I and as before, D(f) ∈ I.

Lemma 4.1.14. In the situation of Theorem 4.1.12, ker δ = I(2)/I2 and f ∈ I(2) iff

f ∈ I and D(f) ∈ I for all D ∈ DerA(R)
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Proof. Let L be the kernel of δ. By Lemma 4.1.13, if f ∈ I(2) then f ∈ I and

D(f) ∈ I. hence I(2)/I2 ⊂ L. To show the converse we consider the exact sequence

0→ L→ I/I2 → T ⊗S Ωk(S)→ Ωk(T )→ 0.

Localizing at a minimal prime Q of I and using the fact that the module of differentials

localizes (See Proposition 2.2.1) we have

0→ LQ → QSQ/Q2SQ → TQ ⊗SQ Ωk(SQ)→ Ωk(TQ)→ 0.

Note here that we used that kQ∩k = k. Also, since T is reduced, this means I is

radical, so I = p1 ∩ · · · ∩ pr for some primes pi. But then localizing at any one of

them, will yield

Ipi = (pi)pi = piSpi

justifying our use of IQ = QSQ. Finally, since T is reduced, if we localize at a minimal

prime, we get a field K. Thus we can compute vector space dimensions along the

exact sequence

0→ LQ → QSQ/Q2SQ → K ⊗SQ Ωk(SQ)→ Ωk(K)→ 0.

By generic separability, we have by Propositions 3.2.1 and 3.2.6.

dimK Ωk(K) = trdegk K.

Since S is just a localization of a polynomial ring over k we have that Ωk(S) is free

(Theorem 2.1.7 and Proposition 2.2.1) so we have that K ⊗SQ Ωk(SQ) is free, so to

compute the dimension, we can compute the minimal number of generators. Thus
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Theorem 3.3.4 gives

µ(K ⊗SQ Ωk(SQ)) = µ(Ωk(SQ)) = edimSQ + trdegk K.

Finally, since dimK QSQ/Q2SQ = edim SQ and since dimension is additive, we have

that the dimension of L must be 0.

If LQ = 0 for all minimal primes Q then we will show that L ⊂ I(2)/I2. First note

that

I(2) = {f ∈ S | for primes Q minimal over I there exists z ∈ S \ Q : fz ∈ I2}.

Now let f ∈ L and let Q be a minimal prime. Then since LQ = 0 we have fz = 0 ∈

I/I2 for some z ∈ S \ Q. Hence fz ∈ I2 so f ∈ I(2).

Proof of Theorem 4.1.12: To complete the proof of the theorem, we must prove that

every evolution of T is trivial iff I(2) ⊂ mI. But by Corollary 4.1.9, T is evolutionarily

stable iff for all f ∈ I with ∂(f) ∈ I for all derivations ∂, f ∈ mI. But then our result

follows immediately from Lemma 4.1.14.

This theorem completes the translation into commutative algebra, and we are now

able to state the Eisenbud-Mazur Conjecture in its classic form.

Conjecture 4.1.15. (Eisenbud-Mazur) Let I be an unmixed radical ideal in a regular

local ring (R,m) over a field of characteristic zero. Then I(2) ⊂ mI

Notice that this conjecture corresponds to Question 4.1.8, although it is phrased

slightly differently. Theorem 4.1.12 provides the link to original question of Mazur

in the case of a polynomial ring over a field, and it is possible to extend the results

of this Theorem to the case when k is an arbitrary Noetherian regular ring. We will

later see that it is necessary to require that R be regular when as there are easy

counterexamples to the above conjecture in the case of non-regular rings.
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The Eisenbud-Mazur conjecture can be stated in many different ways, but perhaps

the most interesting is Question 4.1.5. Eisenbud and Mazur prove a variation of

Corollary 4.1.9 in [2] which we state below.

Corollary 4.1.16. There exists a reduced local C-algebra T of finite type whose local-

ization at the origin has a nontrivial evolution if and only if there exists a polynomial

f ∈ C[[x1, . . . , xn]] without constant term such that

f /∈ (x1, . . . , xn)
√

(f, df/dx1, . . . , df/dxn).

Thus we can effectively study this problem only looking at derivatives in power

series rings!

4.2 Current Progress

In the previous section, we showed that studying the existence of nontrivial evolu-

tions is equivalent to studying ideals and symbolic squares via Theorem 4.1.12. Not

surprisingly, progress on this problem has come by analyzing certain classes of ideals.

We will consider the following question:

Question 4.2.1. Let (R,m) be a local ring over a field k, and I an unmixed ideal.

Is I(2) ⊂ mI?

As it turns out, there is an easy counterexample if we do not require R to be regu-

lar, and in [2], the authors construct counterexamples in every positive characteristic.

Thus the statement in Conjecture 4.1.15 above seems most promising.

In this section we give a positive answer to Question 4.2.1 in some special cases.

We first prove the result for monomial ideals and quasi-homogeneous ideals and then

for perfect ideals of height two. We end with the counterexamples in characteristic p

and the in the non-regular case.
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4.2.1 Monomial and Quasihomogenous Ideals

Proposition 4.2.2. (From [2]). Suppose that I is an unmixed monomial ideal in a

polynomial ring k[x1, . . . , xn]. Let m = (x1, . . . , xn). If P is a monomial prime ideal

containing I then for any d > 0 we have I(d) ⊂ PI(d−1). In particular this shows that

I(2) ⊂ mI(1) = mI.

Proof. Suppose that I = Q1 ∩ · · · ∩ Qr is a primary decomposition for I. Then all

the Qi are monomial. Thus Qi is primary to the monomial prime Pi = (xi1 , . . . , xis),

if and only if Qi contains a power of each of the variables xit , and the minimal

generators of Qi do not involve any variables other than xi1 , . . . , xis . Because of this

characterization, any power of a primary monomial ideal is again primary, and we

claim I(d) = Qd
1 ∩ · · · ∩Qd

r . To see this, note that by the discussion in this paragraph,

both sides have the same associated primes, which by the unmixedness of I implies

that they are minimal primes. Thus to check equality we can verify it at the minimal

primes, which then boils down to the definition of symbolic power.

Next suppose that - is a monomial in I(d). Then by the argument above, for each

index j we can write

- = rjmj,1 · · ·mj,d, mj,i ∈ Qj

since - ∈ ∩Qd
j . Since - ∈ P , some variable xt ∈ P divides - and thus divides one

of the rj, mj,1, . . . ,mj,d. Thus -/xt may be written as a product with at least d − 1

factors in Qj, so -/xt ∈
⋂

Qd−1
j = I(d−1). Thus - ∈ PI(n−1).

This theorem can be generalized slightly in characteristic zero, by using the Euler

formula given in Remark 4.1.4.

Proposition 4.2.3. Let R = k[x1, . . . , xn] be a polynomial ring over a field k, and let

m = (x1, . . . , xn). Suppose that I is a radical R-ideal which is quasihomogeneous (that
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is, homogeneous with respect to some system of strictly positive integer weights of the

variables). If f ∈ I(d) is a quasihomogeneous element, then deg(f) · f ∈ mI(d−1). In

particular, if char(k) = 0 then I(d) ⊂ mI(d−1).

Proof. If f ∈ I(d) then there is an element h not contained in any minimal prime of

I such that hf ∈ Id. Differentiating, we obtain

h · df/dxj + f · dh/dxj ∈ Id−1

for each j. Since f ∈ I(d−1) we have h · df/dxj ∈ I(d−1), and since h is not contained

in any minimal prime of I, df/dxj ∈ I(d−1). By Euler’s formula (see Remark 4.1.4),

deg(f) · f = wj · xj · df/dxj

where wj is the weight of xj. This shows that

deg(f) · f ∈ mI(d−1).

4.2.2 Perfect ideals of Height 2

To prove the conjecture for perfect ideals of height two we will use Fitting ideals

defined earlier. Before starting the proof, we recall some basic facts.

Remark 4.2.4. Let M be a finitely generated R-module.

• If M ′ ⊂M is a submodule, then Fitti(M) ⊂ Fitti(M/M ′).

• If I ⊂ R is an ideal then Fitti(M/IM) ⊂ Fitti(M) + I.

Both of these facts are straightforward to derive, and come almost immediately

by thinking of the relationship between the presentation matrices for the different

modules. We begin our proof of the theorem with a lemma about Fitting ideals

which is given in [2]. The proof given is due to Huneke.
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Lemma 4.2.5. If I is an ideal of grade ≥ c in a Noetherian ring, then Fittc−1(I) ⊂ I.

Proof. It is possible to choose a set of generators {f1, . . . , fm} for I such that every

subset of c− 1 elements forms a regular sequence since the ideal has grade at least c.

This is tedious to verify, but follows from the fact that a complete intersection can

always be generated by a set of elements which is a regular sequence in any order.

A proof of this statement is outlined in Exercise 17.6 of [1]. Let φ be the matrix of

relations on these generators.

We now use Cramer’s rule to see that every m − c + 1 minor of a presentation

matrix for I multiplies I into the ideal generated by some subset of c−1 of the fi. We

work this out in detail because it is interesting and a good review of linear algebra.

Without loss of generality, we suppose the minor we are looking at is in the bottom

left of the matrix φ. Suppose that φ has block form





∗ ∗

B ∗





where B is an (m − c + 1)× (m − c + 1) square matrix. Then since φ is the matrix

of relations,

[f1, . . . , fm]




∗

B



 = 0.

which implies that [fc, . . . , fm]B = (b1, . . . , bm−c+1) where bi ∈ (f1, . . . , fc−1).

Now Cramer’s rule says that

det B · fk = det(Bk),

where Bk is the matrix obtained from B by replacing the kth column by [b1, . . . , bm−c+1].
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Thus by expanding this determinant by the kth column, we see that

det B · fk ∈ (f1, . . . , fc−1)

as required. We have just proven that every m− c+1 minor of φ multiplies I into an

ideal I ′ generated by some regular sequence generated by c− 1 of the fi. In symbols,

det B · I ⊂ I ′.

Because the grade of I is at least c, I contains a non zero divisor modulo I ′, this

implies that det B ∈ I ′. This implies that Fittc−1(I) ⊂ I.

With this theorem in hand, we are ready to state a criterion for an element to be

in the symbolic square of an ideal which involves the Fitting ideal.

Theorem 4.2.6. Suppose I is an unmixed ideal of depth ≥ c in a Noetherian ring,

and x ∈ I. If x ∈ I(2) then

Fittc−1(I/(x)) ⊂ I.

If I is generically a complete intersection of height c then the converse holds as well.

Note that when we say I is “generically a complete intersection of height c” we

mean that I is unmixed of height c and that at all minimal primes Q of I, IQ is a

complete intersection - generated by a regular sequence.

Proof. First let x ∈ I(2). We would like to show that Fittc−1(I/(x)) ⊂ I. It suffices

to prove this inclusion at all associated primes of I, and since I is unmixed, at the

minimal primes of I. After localizing, we may assume that x ∈ I2.

Now I/(x) surjects onto I/I2 = I ⊗R/I, so from the relations in 4.2.4 we have

Fittc−1(I/(x)) ⊂ Fittc−1(I/I2) ⊂ Fittc−1(I) + I

and we are done by the previous lemma.
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Conversely, suppose I is generically a complete intersection of depth c and Fittc−1(I/(x))

is contained in I. To show that x ∈ I(2) it is enough to show this locally at the as-

sociated primes of I(2). Since the associated primes of I(2) are all minimal primes of

I, we may begin by localizing at one and suppose that I = (f1, . . . , fc) is a complete

intersection. In this situation we have I2 = I(2), and we want to prove that x ∈ I2.

The ideal I is generated by the c element fi. We may take the same generators for

I/(x). One of the relations for I/(x) may be represented as a column vector whose

entries gi satisfy x =
∑

gifi. From the definition of Fittc−1(I/(x)), these are the

minors of size c − (c − 1) = 1 of the presentation matrix. Thus gi ∈ Fittc−1(I/(x))

which implies that gi ∈ I by assumption, so that x =
∑

gifi ∈ I2.

The ideas in the previous proof yield an easy generalization:

Proposition 4.2.7. If I is an unmixed ideal of depth ≥ c in a Noetherian ring and

I is generically a complete intersection then x ∈ I(d+1) if and only if

FittN−1(I
(d)/(x)) ⊂ I,

where N =
(

c+d−1
d

)
.

Finally we are ready to state the main result of this section - that concerns the

symbolic square of a grade 2 perfect ideal. Recall that a grade two perfect ideal is one

which contains a regular sequence of length 2 and that has projective dimension 1

as an R-module. By the famous Hilbert-Burch theorem, these are ideals of maximal

minors of n× (n− 1) matrices.

Theorem 4.2.8. Let (R,m) be a local ring. Suppose I is a perfect R-ideal of height

two which is generically a complete intersection and is generated by the (n−1)×(n−1)

minors of a matrix M . If J is the ideal generated by the entries of any column of the

matrix of M , then I(2) ⊂ IJ . In particular, if the entries of M are contained in m

then I(2) ⊂ mI.
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Proof. By the Hilbert-Burch theorem, a free resolution of I is of the form

0→ Rn−1 → Rn → I → 0

where the left hand map is given by M . The generator of I coming from the jth

generator of Rn is exactly the minor obtained from M involving all but the jth row.

Now let x ∈ I. We will show that x can be seen as the determinant of an n × n

matrix, whose first n− 1 columns are the columns in M .

To see this, let {f1, . . . , fn} be generators for i. Since x ∈ I we have that x =
∑

rifi for some ri ∈ R. Then forming the matrix

N =





±r1

M
...

±rn





with the appropriate signs, we see by expanding about the last column that x = det N .

Now let x ∈ I(2). We will show x ∈ IJ if J is the ideal generated by one of the

columns. The matrix N is a presentation matrix of I/(x), so by the previous theorem,

x ∈ I(2) if and only if Fitt1(I/(x)) ⊂ I, that is, if and only if the (n − 1) × (n − 1)

minors of N are contained in I. Expanding the determinant of N along a column of

M we see that x = det N ∈ IJ where J is the ideal generated by the entries in that

column. This completes the proof.

4.2.3 Counterexamples

In this section we give two counterexamples to the Eisenbud-Mazur conjecture under

weaker hypotheses. In the first we give an easy counterexample when R is not regular,

and in the second we exhibit that I(2) ⊂ mI does not need to hold in rings of positive

characteristic.
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Example 4.2.9. (Non-regular case)

Let R = C[[x, y, z]]/(x2 − yz) and let P = (x, y). Then P is prime and P (2) = (y)

since y = x2 · z−1 ∈ P 2RP . But y is clearly a minimal generator of P .

Example 4.2.10. (Positive Characteristic Case)

This counterexample is from [2]. Let k be a field of characteristic p > 0, and let

I be the kernel of the map

k[x1, . . . , x4] → k[t]

x1, x2, x3, x4 ,→ tp
2
, tp(p+1), tp

2+p+1, t(p+1)2

(or the localization of this ideal at the maximal ideal (x1, . . . , x4)). Let

f = xp+1
1 x2 − xp+1

2 − x1x
p
3 + xp

4.

We will prove that f is a minimal generator of I but f is contained in I(2).

To show that f ∈ I(2), consider the following polynomials

g1 = xp+1
1 − xp

2

g2 = x1x4 − x2x3

g3 = xp
1x2 − xp

3

One can check by applying the homomorphism of rings above that

f, g1, g2, g3 ∈ I.

Since k[t] is a domain, by the first isomorphism theorem, k[x1, . . . , x4]/I is isomorphic
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to a subring of k[t] and thus is a domain so that I is prime. We note that

xp
1f = g1g3 + gp

2

and x1 /∈ I so that by Example 4.1.11 this shows f ∈ I(2).

All that remains now is to prove that f is a minimal generator. Since f has a term

xp
4, it suffices to show that no element of I has a term of the form xa

4 with 0 < a < p.

Since I is generated by binomials, it suffices to show that there is no binomial of the

form xa
4 − xb

3x
c
2x

d
1 in I, or equivalently that the equation

a(p + 1)2 = b(p2 + p + 1) + cp(p + 1) + dp2 (&)

cannot be satisfied by nonnegative integers a, b, c, d with 0 < a < p.

Reducing (&)mod p we see that a ≡ b mod p. If b = a + np for some n ≥ 1 then

subtracting a(p + 1)2 from both sides, the above equation becomes

0 = (np(p2 + p + 1)− ap) + cp(p + 1) + dp2.

This implies that ap ≥ np(p2 + p + 1). Now since 0 < a < p we have

(p− 1)p ≥ ap ≥ np(p2 + p + 1)

which is impossible. Thus a = b. Subtracting a(p2 + p + 1) from both sides of (&) we

get

p(p− 1) ≥ ap = cp(p + 1) + dp2

but then the right hand is either 0 or greater than p2, a contradiction.

50



4.3 Open Conjectures

In addition to the Eisenbud-Mazur conjecture, there are other (considerably older)

conjectures concerning the module of differentials. We discuss a few in this section.

In this section suppose that k is a perfect field and R is a local k-algebra, a domain,

and essentially of finite type.

Conjecture 4.3.1. (Berger) Suppose that trdegk Quot(R) = 1. Then Ωk(R) is tor-

sion free iff R is regular. Note especially that this implies that Ωk(R) is torsion free

iff it is free.

A stronger statement that implies Berger’s conjecture is the following. If dimR =

0, then -(Ωk(R)) ≥ -(R).

The following conjecture is false in characteristic p > 0 and asks a question dual

to Berger’s conjecture.

Conjecture 4.3.2. (Zariski-Lipman) Suppose char k = 0. Then Derk(R) is free iff

R is regular.

Finally, we ask a question about the projective dimension of the module of differ-

entials. The follow suggests that the projective dimension is always 0, 1 or infinite.

Conjecture 4.3.3. (Vasconcelos) If pdR Ωk(R) < ∞ and R is a complete inter-

section, that is, the quotient of a regular local ring by a complete intersection, then

pdR Ωk(R) ≤ 1.
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