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We call an ideal in a polynomial ring robust if it can be minimally 
generated by a universal Gröbner basis. In this paper we show 
that robust toric ideals generated by quadrics are essentially deter-
minantal. We then discuss two possible generalizations to higher 
degree, providing a tight classification for determinantal ideals, and 
a counterexample to a natural extension for Lawrence ideals. We 
close with a discussion of robustness of higher Betti numbers.
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1. Introduction

Let S = k[x1, . . . , xn] be a polynomial ring over a field k. We call an ideal robust if it can be 
minimally generated by a universal Gröbner basis, that is, a collection of polynomials which form a 
Gröbner basis with respect to all possible monomial term orders. Robustness is a very strong condi-
tion. For instance, if I is robust then the number of minimal generators of each initial ideal is the 
same:

μ(I) = μ(in< I) for all term orders < . (1.1)

In general, we can only expect an inequality (≤).
For trivial reasons, all monomial and principal ideals are robust. Simple considerations show 

that robustness is preserved upon taking coordinate projections and joins (see Section 2). However, 
nontrivial examples of robust ideals are rare. A difficult result of Bernstein and Zelevinsky (1993), 
Sturmfels and Zelevinsky (1993) (recently extended by Boocher, 2012 and Conca et al., 2013) shows 
that the ideal of maximal minors of a generic matrix of indeterminates is robust.

In the toric case, questions concerning Gröbner bases have been addressed by many different au-
thors. A classification of the universal Gröbner basis for toric ideals arising from graphs was given 
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by Tatakis and Thoma, 2011. For toric varieties of minimal degree, the universal Gröbner basis is en-
coded by colored partition identities (Petrović, 2008; Bogart et al., 2012). Interest in such problems is 
aided by the fact that toric ideals enjoy a rich interplay with phylogenetic models, Markov bases, and 
algebraic statistics. See e.g. Eriksson (2004). Surveying the literature, it is clear that robust toric ideals 
are rare. The largest known class of robust toric ideals is the set of Lawrence ideals and as far as we 
are aware, a systematic study of robustness for toric ideals has not yet been undertaken.

Our main result is the following:

Theorem 1.2. Let F be a set of irreducible binomials that minimally generate an ideal. (Assume that F cannot 
be partitioned into disjoint sets of polynomials in distinct variables.) If F consists of homogeneous polynomials 
of degree 2 then the following are equivalent:

• The ideal generated by F is robust.
• |F | = 1 or F consists of the 2 × 2 minors of a generic 2 × n matrix(

x1 · · · xn

y1 · · · yn

)

up to a rescaling of the variables.

Furthermore, in higher degree, it is not true that the robustness of (F ) implies that it is determinantal (or even 
Lawrence).

We remark that if the polynomials are not required to be irreducible or homogeneous, the theory 
of universal Gröbner bases becomes more complicated. Since there is no analogue of Nakayama’s 
lemma, the notion of a minimal generating set is more subtle. In this setting, for example, Dickenstein 
and Tobis (2012) give an example of a universal Gröbner basis generated by degree two binomials 
arising from a poset.

Our own motivation for studying robust toric ideals arises primarily from an interest in Gröbner 
bases of small size. Apart from the seminal result for maximal minors (Bernstein and Zelevinsky, 
1993; Sturmfels and Zelevinsky, 1993), there are many cases where one particular Gröbner basis is a 
minimal generating set. Conca et al. (2006) studied certain classical ideals and determined when they 
are minimally generated by some Gröbner basis. This is interesting for algebraists, for instance, since 
one of the most fruitful ways to show an algebra is Koszul has been via the use of G-quadratic ideals 
— those minimally generated by a quadratic Gröbner basis.

We lastly remark that passing from an ideal to an initial ideal is a particular type of flat degener-
ation. In this phrasing, robustness is almost equivalent to the property that the minimal number of 
generators is preserved by these degenerations.1 This interpretation suggests there might be a geo-
metric interpretation of robustness in terms of the Hilbert scheme.

The paper is organized as follows: in Section 2 we prove our main result, Theorem 1.2 characteriz-
ing robust toric ideals generated in degree two. The methods are mainly combinatorial. In Sections 3
and 4 we pose two questions concerning extensions of Theorem 1.2 using Lawrence ideals. We pro-
vide negative and positive answers respectively. Section 5 closes with a discussion of “robustness of 
higher Betti numbers,” our original motivation for this project.

2. Quadratic robust toric ideals are determinantal

In the sequel, by a toric ideal we will always mean a prime ideal generated minimally by homoge-
neous binomials with nonzero coefficients in k. By the support of a polynomial we mean the set of 
variables appearing in its terms.

1 Note that the equality (1.1) is in general, weaker than robustness. For example, consider the ideal (x − y, y − z).
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Definition 2.1. A set F of polynomials in S is called robust if F is a universal Gröbner basis and the 
elements of F minimally generate their ideal. An ideal I is called robust if I is generated by a robust 
set F . �

If a set of polynomials F can be written as a union F = G ∪ H of polynomials in disjoint sets of 
variables, then we say that G is a robust component of F . Notice that robustness is preserved under 
these disjoint unions, so to classify robust ideals, it suffices to study the ones that admit no such 
decomposition. We remark that the ideal of F corresponds to the join of the varieties corresponding 
to G and H .

The goal of this section is to prove Theorem 1.2.

Remark 2.2. In the statement of Theorem 1.2, we only assume that the generators are irreducible. It 
turns out that this is sufficient to show that the ideal they generate is prime.

Notice that one direction follows immediately from the results of Sturmfels and Zelevinsky (1993)
which show that the 2 × 2 minors are a universal Gröbner basis. To prove the converse, our tech-
nique is essentially to eliminate certain combinations of monomials from appearing in F . To simplify 
notation, we will omit writing coefficients in the proofs when it is clear that they do not affect the 
argument. In particular, we treat the issue of coefficients only in tackling the proof of Theorem 1.2
itself and not in earlier lemmas.

Lemma 2.3. Let F be a robust set of irreducible quadratic binomials. Then no monomial appears as a term in 
two different polynomials in F .

Proof. Suppose that the monomial m appears in the polynomials f , g ∈ F . Let < be a Lex term order 
taking the support of m to be first. Since f and g are prime, < will select m as the lead term of both 
f and g , and applying Buchberger’s algorithm, we would obtain a degree zero syzygy of the elements 
in F , contradicting the minimality of F . �
Proposition 2.4. If F is robust, and 0 ≤ k ≤ n, then so is F ∩ k[x1, . . . , xk].

Proof. Write Fk = F ∩ k[x1, . . . , xk]. It is clear that Fk minimally generates the ideal (Fk). Let < be 
any term order on k[x1, . . . , xk]. Extend < to a term order <S on S , taking x1, . . . , xk last. Then since 
F is a Gröbner basis with respect to <S , by basic properties of Gröbner bases, we know that Fk will 
be a Gröbner basis with respect to <. �

The above proposition is extremely useful, because in our analysis it will be helpful to assume we 
are working in a ring with few variables. We will use this reduction extensively in the following main 
technical lemma. We use the letters a, . . . , z when convenient for ease of reading.

Lemma 2.5. Let F be a robust set of prime quadratic binomials:

(a) F cannot contain two polynomials of the form

f = x2 + yz, g = xy + m

or

f = x2 + y2, g = xy + m

or

f = x2 + y2, g = xz + m

where m is any monomial.
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(b) F cannot contain two polynomials of the form

f = xi x j + xkxl, g = xi xk + xp xq

(here we do not assume i, j, k, l, p, q are distinct).
(c) F cannot contain two polynomials of the form

f = x2 + yz, g = xw + m

or

f = x2 + yz, g = yw + m

where m is any monomial.
(d) If f , g ∈ F are two polynomials whose supports share a variable, then all terms of f and g are squarefree.
(e) If F contains two polynomials whose supports share a variable, then (up to coefficients) F must contain 

the 2 × 2 minors of a generic matrix.(
a b c
d e f

)
.

Proof. a) We prove the first statement. The proofs of the others are similar. Suppose that f , g ∈ F . 
Notice that by irreducibility, m cannot contain a factor of y. Let < be the lex term order with (y >
x > z > all other variables). Then the S-pair of f and g is x3 − mz, whose lead term is x3. Since F
is a Gröbner basis with respect to < we must have some polynomial h whose lead term divides x3. 
Since x2 is not the lead term of f , h �= f and we must have two distinct polynomials in F with x2

appearing. This contradicts Lemma 2.3.
b) Suppose that f , g ∈ F . By restricting to the subring k[xi, x j, xk, xp, xq], Proposition 2.4 tells us 

we can assume F involves only these variables. Notice by irreducibility (and part (a)) we know that k
and i are distinct from j, l, p, q. Let < be the lex term order with (xk > xi > all other variables.) Then 
the S-pair of f and g is x2

i x j − xlxp xq , whose lead term is x2
i x j . As in part a) we must have some 

polynomial h ∈ F whose lead term divides x2
i x j . The only possible monomials are x2

i and xi x j . And 
since xi x j appears in f (and is not a lead term) we must have a polynomial h = x2

i + xaxb ∈ F for 
some a, b ∈ {i, j, k, l, p, q}. So F contains

f = xix j + xkxl, g = xi xk + xpxq, h = x2
i + xaxb.

Applying part a), and irreducibility, we know that a, b ∈ {l, p, q}. By part a), we know that xaxb must 
be squarefree, and since xp xq already appears, we can say (renaming p and q if necessary) that 
xaxb = xlxp . But now choosing < to be the lex term order with (xl > xp > xi > xk > all other variables) 
we see that the S-pair of f and h is x2

i xk − xi x j xk whose lead term is x2
i xk which is only divisible by 

the monomials x2
i and xi xk , neither of which can be a lead term of a polynomial in F by Lemma 2.3.

c) We will prove the first statement. The second proof is similar. Suppose that f , g ∈ F . First 
restrict, using Proposition 2.4 to assume we are working only with the variables x, y, z, w and the 
factors of m. Let < be the lex term order with (w > x > all other variables. Taking the S-pair of 
f and g , we obtain wyz − mx, whose lead term is wyz. Since this must be divisible by the lead 
term of some polynomial h ∈ F , without loss of generality, we assume h = wy + n. Consider now the 
possibilities for n. By primeness n cannot contain a factor of w or y. By part b) it cannot contain a 
factor of x or z. Hence, the only possible options left are that the factors of n are contained in the 
factors of m. But this means that m, n are ab, a2 for some (new, distinct) variables a, b. As in (b), we 
can conclude this is impossible.

d) This follows immediately from parts a)–c).
e) We assume that F contains two polynomials whose supports intersect. By d) we can assume 

that these polynomials are squarefree, and we write them as p = ae − bd, q = af − m1m2 where mi
represents some variable. Notice that by irreducibility and part b), neither m1 nor m2 can be a, e or f . 
Nor can m1m2 = bd (since it would be a repetition). Hence we may as well assume m1 is different 
from the other variables, and call it c. There are now two cases: Either m2 is also a new variable g , 
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or it isn’t, in which case we can see that without loss of generality, m2 = d. Rewriting: If p, q are two 
polynomials whose supports intersect, then they must contain either 6 or 7 distinct variables.

In the case of 6 variables, restrict F to the subring k[a, b, c, d, e, f ]. Now

p = ae − bd, q = af − cd.

Computing an S-pair with the lex order (a > b > d > all other variables) we obtain f bd − ecd with 
lead term f bd. This must be divisible by the lead term of some polynomial r ∈ F . But this lead term 
cannot be bd (by its presence in p), hence it must be either bf or df . In case it is bf then F contains 
a polynomial of the form r = bf − n1n2. Now n1, n2 ∈ {a, c, d, e} by irreducibility. And part b) of this 
lemma allows us to further say n1, n2 ∈ {c, e} which along with squarefreeness implies that r = bf −ce
as required. In case the term is df , similar considerations show that parts a)–d) will not allow any 
n1n2.

In the case of 7 variables, restrict F to the subring k[a, b, c, d, e, f , g]. Now

p = ae − bd, q = af − cg.

Computing an S-pair with the lex term order (a > b > d > all other variables): we obtain f bd − ebg
with lead term f bd. This must be divisible by the lead term of some polynomial r ∈ F . But this 
lead term cannot be bd (by its presence in p), hence it must be either bf or df . By symmetry we can 
assume that it is df and that F contains a polynomial of the form df −n1n2. Now n1, n2 ∈ {a, b, c, e, g}
by irreducibility, and part b) restricts us further to n1, n2 ∈ {c, e, g}. And since cg already appears, 
we can conclude that n1n2 = eg or ec (and again by symmetry, we may assume n1n2 = ec). But now 
notice that q and r are two polynomials whose supports intersect, and involve only 6 variables. Hence, 
by the previous part of this proof, we can conclude that F contains a polynomial s = gd −ae. But this 
is a contradiction by Lemma 2.3. �
Proof of Theorem 1.2. Suppose that |F | > 1. Since F is irreducible, it must contain two polynomials 
whose supports intersect. By Lemma 2.5 we can conclude that F contains polynomials of the form:

p1 = ae − bd, p2 = af − cd, p3 = bf − ce

up to coefficients. However, the S-pair in the lex order (a > b > · · · > f ) is:

S(p1, p2) = bdf − cde (with some nonzero coefficients)

which after reducing by p3 we obtain either zero, or a constant multiple of cde. In the latter case, in 
order to continue the algorithm, we would have to have another polynomial in F whose lead term 
divides cde. By the presence of p1, p2, p3, the terms cd and ce are prohibited. And by Lemma 2.5(b), 
de is also prohibited. Hence, this S-pair must reduce to zero after only two subtractions.

This means in fact, that the polynomials are precisely determinants of some matrix(
λ1a λ2b λ3c
μ1d μ2e μ3 f

)

for some nonzero constants λi, μi .
To complete the proof, suppose that F �= {p1, p2, p3}. Since F is irreducible, one polynomial p4 ∈ F

must share a variable with say, p1. Renaming variables if necessary, say that variable is a. Then 
(ignoring constants for the moment) by applying the proof of Lemma 2.5(e), to the polynomials p1 =
ae − bd and p4 = ah − m1m2 we can conclude that F contains the minors of the matrix(

λ1a λ2b λ4 g
μ1d μ2e μ4h

)
.

Applying this technique to p2 and p4 as well, shows that we in fact get all 2 × 2 minors of the 
full matrix
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(
λ1a λ2b λ3c λ4 g
μ1d μ2e μ3 f μ4h

)
.

Inductively we continue this process until we obtain all of F . �
Notice that in our proof, every term order we used was a Lex term order, and obtained a prime 

ideal. Hence, we have the following:

Corollary 2.6. Let F be a set of prime quadratic binomials that minimally generate an ideal. Then the following 
are equivalent:

(i) F is a Gröbner basis with respect to every Lex term order.
(ii) F is a Gröbner basis with respect to every term order.
(iii) F generates a prime ideal and the irreducible robust components of F are generic determinantal ideals 

and hypersurfaces.

Corollary 2.7. If X is a generic k × n matrix, and F is the set of 2 × 2 minors, then F is a universal Gröbner 
basis if and only if k = 2.

Remark 2.8. It is almost the case that every irreducibly robust component is determinantal. Indeed, 
every prime binomial is up to rescaling either xy − zw or x2 − yz. The former is determinantal. Thus 
the only possible non-determinantal robust component is {x2 − yz}.

3. From determinants to Lawrence ideals

Encouraged by the result of the previous section, it is natural to ask to what extent robustness 
classifies generic determinantal ideals. Indeed, it is easy to see that the ideal of minors of any 2 × n
matrix whose entries are relatively prime monomials will be robust. There are two questions we 
consider:

Question 3.1.

1. If I is a robust toric ideal, is I generated by the 2 × 2 minors of some matrix of monomials?
2. Precisely which matrices of monomials provide robust ideals of 2 × 2 minors?

The answer to the first question is negative. Examples are provided by Lawrence ideals, studied 
in Sturmfels (1996). If I is any toric ideal, with corresponding variety X ⊂ Pn−1, then the ideal J
corresponding to the re-embedding of X in (P1)n−1 is called the Lawrence lifting of I . Its ideal is 
generated by polynomials of the following form:

J L = (
xayb − xbya

∣∣ a − b ∈ L
) ⊂ S = k[x1, . . . , xn, y1, . . . , yn],

where L is a sublattice of Zn and k is a field. Here a = xa1
1 xa2

2 · · · xan
n for a = (a1, . . . , an) ∈Nn . Binomial 

ideals of the form J L are called Lawrence ideals. The following result is Theorem 7.1 in Sturmfels
(1996).

Proposition 3.2. The following sets of binomials in a Lawrence ideal J L coincide:

a) Any minimal set of binomial generators of J L .
b) Any reduced Gröbner basis for J L .
c) The universal Gröbner basis for J L .
d) The Graver basis for J L .

Hence Lawrence ideals provide a large source of robust toric ideals, and naturally include the class 
of generic determinantal ideals. Given this, it is natural to rephrase the first part of Question 3.1 as:
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Question 3.3. Does robustness characterize Lawrence ideals?

Again the answer is negative.

Example 3.4. The ideal

I= (
b2e− a2f,bc2 − adf,ac2 − bde,c4 − d2ef

)
in the polynomial ring Q[a, b, c, d, e, f ] is robust but not Lawrence. This example was found using the 
software Macaulay2 and Gfan (Grayson and Stillman; Jensen). It is the toric ideal I L corresponding 
to the lattice defined by the kernel of

L =
⎛
⎜⎝

1 1 1 1 1 1
1 1 0 0 0 0
0 0 1 2 0 0
1 0 1 0 3 1

⎞
⎟⎠ . �

Given this counterexample we ask

Question 3.5. Is there a nice combinatorial description of robust toric ideals?

Remark 3.6. Heuristically, it is very easy to find robust ideals that are not Lawrence by starting with 
a Lawrence ideal given by J L . This lattice L gives rise to a lattice L̃ ⊂ N2n such that J L = I L̃ . By 
modifying L̃ slightly, it is very often the case that the resulting toric ideal is robust (though often 
non-homogeneous). The ubiquity of these examples computationally suggests that a nice combinato-
rial description of robustness may require imposing further hypotheses.

4. Matrices of monomials

In this section we answer Question 3.1.2.

Theorem 4.1. Suppose that Xi, Y j are monomials of degree at least 1 in some given set of variables U =
{u1, u2, . . . , ud}. Let

A =
(

X1 X2 · · · Xn

Y1 Y2 · · · Yn

)
,

where n � 3 and suppose that the set F of 2 × 2-minors Xi Y j − X j Yi , i �= j consists of irreducible binomials. 
Then F is robust if and only if all the monomials Xi, Y j are relatively prime.

The proof is technical, so we begin by fixing notation. Since we assume that each Xi Y j − X j Yi
is prime for all i �= j, then gcd(Xi, X j) = gcd(Yi, Y j) = gcd(Xi, Yi) = 1 for all i �= j. Therefore, if we 
define

zi j = gcd(Xi, Y j),

then we can write

Xi = xi

∏
j �=i

zi j and Y j = y j

∏
i �= j

zi j .

Thus,

(i) gcd(xi, x j) = gcd(yi, y j) = 1 for all i �= j

(ii) gcd(zi j, zkl) = 1 whenever i �= k or j �= l,

(iii) gcd(xi, zkl) = 1 if i �= k and gcd(y j, zkl) = 1 if j �= l.
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Our goal is to show that zi j = 1 for all i �= j.

Lemma 4.2. If z12 �= 1 then n � 4 and for each m � 3, there exist im, lm �= 1, 2, m and jm, km �= 1, 2 and term 
orders >1 and >2 such that

(iv) Xim Y jm | X2Y 2
m

X1

z12
and Xim Y jm >1 X jm Yim

(iv)′ Xkm Ylm | X2
mY1

Y2

z12
and Xkm Ylm >2 Xlm Ykm .

Moreover,

Xim = xim zimm and xim |zimm,

Ylm = ylm zmlm and ylm |zmlm .

Proof. We will build <1 and <2 in several steps. To begin, take a lex term order > where the vari-
ables in z12 are first. Consider the S-pair:

S(X1Ym − XmY1, XmY2 − X2Ym)

= lcm(X1Ym, XmY2)

X1Ym
(X1Ym − XmY1) − lcm(X1Ym, XmY2)

XmY2
(XmY2 − X2Ym)

= Xm
Y2

z12
(X1Ym − XmY1) − Ym

X1

z12
(XmY2 − X2Ym)

= X2Y 2
m

X1

z12
− X2

mY1
Y2

z12
.

Since all of the variables in X2Y 2
m

X1
z12

− X2
mY1

Y2
z12

are different from the variables in z12, then there 
exist term orders >1 and >2 refining > for which X2Y 2

m
X1
z12

is the leading term for >1 and X2
mY1

Y2
z12

is the leading term for >2.
Consider first >1: X2Y 2

m
X1
z12

>1 X2
mY1

Y2
z12

. Since the Xi Y j − X j Yi form a Gröbner basis with respect 
to >1, there exist im �= jm such that

(iv) Xim Y jm | X2Y 2
m

X1

z12
and Xim Y jm >1 X jm Yim

in this ordering. If jm = 2, then z12 | Y2 | X2Y 2
m

X1
z12

, which is not true. If jm = 1, then since z12 | X1 |
X1Yim and z12 � Xim Y1 and z12 was chosen to have its variables first in >1, then X jm Yim = X1Yim >1
Xim Y1 = Xim Y jm , which is not true by (iv). Thus, jm � 3. Similarly, we can deduce that im � 3. Thus, 
im, jm � 3.

Since im � 3, gcd(X1, Xim ) = gcd(X2, Xim ) = 1, and we are assuming that Xi, Yi �= 1 for all i and 
Xim | X2Y 2

m
X1
z12

then Xim | Y 2
m . Since gcd(Xm, Ym) = 1, im �= m either. Thus, we have that im �= 1, 2, m

and jm � 3. So, in particular, if n = 3, we already have a contradiction. We assume now that n � 4. 
Since Xim = xim

∏
j �=im zim j and Ym = ym

∏
k �=m zkm , properties (i) and (iii) allow us to conclude that 

Xim = xim zimm and xim | zimm .
Going back to when we chose the ordering >1, consider now the ordering >2 for which 

X2
mY1

Y2
z12

>2 X2Y 2
m

X1
z12

. By a symmetric argument we find that there exist km � 3, lm �= 1, 2, m such 
that Xkm Ylm | X2

mY1
Y2
z12

and, thus, Ylm = ylm zmlm with ylm | zmlm .
Hence, there exist im, lm �= 1, 2, m and jm, km �= 1, 2 such that Xim = xim zimm , xim | zimm and Ylm =

ylm zmlm , ylm | zmlm . �
Lemma 4.3. If z12 �= 1, then n is even and we can rearrange the numbers 1, . . . ,n so that for each i � n

2 ,



262 A. Boocher, E. Robeva / Journal of Symbolic Computation 68 (2015) 254–264
X2i = x2i z2i,2i+1 and Y2i = y2i z2i+1,2i

X2i+1 = x2i+1z2i+1,2i and Y2i+1 = y2i+1z2i,2i+1

and x2i, y2i+1 | z2i,2i+1 and x2i+1, y2i | z2i+1,2i .

Proof. By property (ii) and Lemma 4.2 we have that m 	→ im and m 	→ lm are permutations on 
{3, . . . , n} with no fixed points. Thus, for each i � 3, there exists m � 3 such that m �= i and i = im , 
Xi = xi zim with xi | zim and for each l � 3, there exists m � 3, m �= l such that l = lm and Yl = yl zml .

Fix m′ �= 1, 2. Then Xim′ = xim′ zim′m′ and xim′ | zim′ m′ . Since we assumed that Xim′ �= 1, then 
zim′ m′ �= 1. So now, repeating the whole argument with m′ and im′ instead of with 1 and 2 (recall 
that im′ �= 1, 2, m′), we would get similar permutations on {1, . . . , n} \ {m′, im′ }. But, by property (ii), 
these permutations have to agree with the permutations m 	→ im and m 	→ lm from above on the set 
{1, . . . , n} \ {1, 2, m′, im′ }. Thus, (1, 2) and (m′, im′ ) will be transpositions in all of these permutations 
(and, in particular, im′ = lm′ ).

Since we can run the above argument with any m′ �= 1, 2, we have that the permutations m 	→ im

and m 	→ lm agree and are composed of transpositions (m, im). In particular, n is even and, after rear-
ranging the numbers from {1, . . . , n} so that i2k = 2k + 1 and, thus, i2k+1 = 2k for all k = 1, . . . , n/2, 
our matrix A looks as follows:

A =
(

x1z12 x2z21 x3z34 x4z43 · · ·
y1z21 y2z12 y3z43 y4z34 · · ·

)
.

The rest of the statement of the lemma follows from Lemma 4.2. �
Proof of Theorem 4.1. (⇒): It suffices to show that zi j = 1 for all i, j. Without loss of generality, 
assume that z12 �= 1.

By Lemma 4.2 we have that

Xim Y jm | X2Y 2
m

X1

z12
and Xkm Ylm | X2

mY1
Y2

z12

for all m � 3. But by (the proof of) Lemma 4.3 we know that the above hold when we substitute 1
and 2 with any m′ and im′ such that m �= im′ , m′ , i.e.

Xim Y jm | Xim′ Y 2
m

Xm′

zm′ im′
and Xkm Ylm | X2

mYm′
Yim′

zm′ im′

Rewriting out the expressions in the form Xim = xim zimm and Ylm = ylm zmlm and then canceling re-
peating factors, we get that

xim y jm zl jm jm | xim′ zim′m′ y2
mzimmxm′ and xkm zkmlkm

ylm | x2
mzmlm ym′ zim′m′ yim′

for all m′ �= m, im . Therefore, we have that for every m′ �= m, im

zl jm jm | xim′ zim′m′ y2
mzimmxm′ and zkmlkm

| x2
mzmlm ym′ zim′m′ yim′

Noting that xim′ | zim′ m′ and xm′ | zm′lm′ and, similarly for ym′ , yim′ , switching m′ with im′ , and using (ii), 
shows us that

zl jm jm | y2
mzimm and zkmlkm

| x2
mzmlm

Again, by property (ii), the only way for this to happen is if jm = km = m. In that case, we have that

xim ymzlmm | xim′ zim′m′ y2
mzimmxm′ and xmzmlm ylm | x2

mzmlm ym′ zim′m′ yim′

Again, by (i), (ii), and (iii), and by switching m′ and im′ , we have that

xim ymzimm | y2
mzimm and xmzmlm ylm | x2

mzmlm
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After cancelations,

xim | ym and ylm | xm.

Thus, xim = ylm = 1. Since i and l are permutations, we have that xm = ym for all m. Thus, our matrix 
looks like this

A =
(

z12 z21 z34 z43 · · ·
z21 z12 z43 z34 · · ·

)
.

But then we have that, for example, X1Y2 − X2Y1 = z2
12 − z2

21, which is not prime! Contradiction! 
Thus, zi j = 1 for all i �= j.

Thus, z12 = 1 and by symmetry, zi j = 1 for all i �= j and gcd(Xi, Y j) = 1 for all i �= j. Combined with 
the assumptions of the theorem statement, we get that gcd(Xi, X j) = gcd(Xi, Yi) = gcd(Yi, Y j) = 1 for 
all i �= j, that is, all the entries of A are pairwise relatively prime.

(⇐): Assume that the entries of A are pairwise relatively prime. Let < be any monomial term 
order. To show that the 2 × 2 minors of A are a Gröbner basis with respect to <, we just need to 
show that all S-pairs reduce to zero. By the result of Bernstin–Sturmfels–Zelevinsky, such a reduction 
is guaranteed to exist for a generic matrix X = (xij). Since all entries of A are relatively prime, it is 
clear that such a reduction will extend simply by the ring map: xij 	→ Xij . �
5. Robustness of higher Betti numbers

Our interest in robust ideals originated with the following classical inequality:

βi(S/I) ≤ βi(S/ in< I) for all i. (5.1)

It is natural to ask for which ideals and term orders equality holds (for all i). In the setting of de-
terminantal ideals, Conca et al proved in Conca et al. (2006) that the ideal of maximal minors of a 
generic matrix has some initial ideal with this property. They also gave examples of determinantal 
ideals for which no initial ideal has this property. In a different vein, Conca, Herzog and Hibi showed 
in Conca et al. (2004) that if the generic initial ideal Gin(I) has βi(I) = βi(Gin(I)) for some i > 0, then 
βk(I) and βk(Gin(I)) also agree for k � i.

Our interest was to instead approach the inequality (5.1) in a universal setting, i.e. to consider 
when equality holds for all term orders <. In this case we say that I has robust Betti numbers. The 
following result is due to the first author (Boocher, 2012)

Theorem 5.2. If I := Ik(X) is the ideal of maximal minors of a generic k ×n matrix X and < is any term order, 
then

βi j(S/ in< I) = βi j(S/I) for all i, j. (5.3)

In particular, every initial ideal is a Cohen–Macaulay, squarefree monomial ideal with a linear free resolution. 
Further, the resolution can be obtained from the Eagon–Northcott complex by taking appropriate lead terms of 
each syzygy.

A combination of Theorems 5.2 and 1.2 yields

Corollary 5.4. Let I be a toric ideal generated in degree two. If I is robust, then I has robust Betti numbers.

Our original hope with this project was that all robust toric ideals had robust Betti numbers. 
Unfortunately, the situation seems much more delicate.

Example 5.5. Using Gfan (Jensen), we were able to check that the Lawrence ideal J L corresponding to 
the lattice L given by the matrix(

1 1 1 1 1
0 1 2 7 8

)

has initial ideals with different Betti numbers. �



264 A. Boocher, E. Robeva / Journal of Symbolic Computation 68 (2015) 254–264
Acknowledgements

Many of the results in this paper were discovered via computations using Macaulay 2 (Grayson 
and Stillman) and Gfan (Jensen). We thank David Eisenbud and Bernd Sturmfels for many useful 
discussions. Finally we thank Seth Sullivant for introducing us to Lawrence ideals and starting us on 
the path toward Example 3.4.

References

Bernstein, David, Zelevinsky, Andrei, 1993. Combinatorics of maximal minors. J. Algebraic Combin. (ISSN 0925-9899) 2 (2), 
111–121. http://dx.doi.org/10.1023/A:1022492222930. MR1229427 (94j:52021).
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