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What is a Monomial Curve?

We begin with the following example:

Example (A Rational Normal Curve)

Consider the following parametrization of a surface:

R2 ↪→ R5

(s, t) 7→ (s4, s3t, s2t2, st3, t4).

Main research goal: Consider what happens to certain geometric
invariants when we forget about one or more of the coordinates in the
image.
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What is a Monomial Curve? (cont.)

Let’s now make this more precise.

Definition (Monomial Curve)

A monomial curve of degree d with parameters A = {0, a1, . . . , ac , d} such
that 0 < a1 < · · · < ac < d is the curve defined by the parametrization

P1 ↪→ Pc+1

(s, t) 7→ (sd , sd−a1ta1 , sd−a2ta2 , . . . , sd−ac tac , td).

In the previous example, the parameters of the degree-4 monomial curve
were A = {0, 1, 2, 3, 4}.
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A Translation into Algebra

The yoga of algebraic geometry is to turn a geometric problem into
an algebraic one—which is what we’d like to do.

Given the parameters A = {0, a1, . . . , ac , d} where a0 := 0, ac+1 := d ,
we can consider the following map of polynomial rings:

φ : R[x0, x1, . . . , xc+1]→ R[s, t]

xi 7→ sd−ai tai .

In particular, we want to look at the elements of the kernel IA of this
map. We can study the geometric properties of the curve by studying
the algebraic properties of the kernel.
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An Example

Let’s return to the first example. Our parameters are A = {0, 1, 2, 3, 4}, so
we define the map

φ : R[x0, x1, x2, x3, x4]→ R[s, t]

x0 7→ s4

x1 7→ s3t

x2 7→ s2t2

x3 7→ s1t3

x4 7→ t4.

Then, kerφ is generated by the
following binomials:

x2
3 − x2x4

x2x3 − x1x4

x1x3 − x0x4

x2
2 − x0x4

x1x2 − x0x3

x2
1 − x0x2.

Notice how they all have degree 2.
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An Example

Next, just consider the parameters A = {0, 1, 3, 4} where we’ve left out
the middle parameter.

Now we define the map

φ : R[x0, x1, x2, x3]→ R[s, t]

x0 7→ s4

x1 7→ s3t

x2 7→ s1t3

x3 7→ t4.
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An Example

φ : R[x0, x1, x2, x3]→ R[s, t]

x0 7→ s4

x1 7→ s3t

x2 7→ s1t3

x3 7→ t4.

Then, IA = ker φ is generated by the
following binomials:

x1x2 − x0x3

x3
2 − x1x

2
3

x0x
2
2 − x2

1x3

x3
1 − x2

0x2.

The largest of these generators has degree 3. In general, the more points
we remove, the larger the degree of the generators. We want to try to
bound the size of these generators in some way.
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Regularity

There is a well-defined algebro-geometric invariant that bounds the
degrees of the generators of our kernel above, which is called
regularity.

Example

The regularity of the curve with parameters A = {0, 1, 2, 3, 4} is 2.
The regularity of the curve with parameters A = {0, 1, 3, 4} is 3.

Regularity is generally hard to compute because of its technical
definition.

In the case of monomial curves, we can compute this combinatorially.
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Computing Regularity

Let A = {0, a1, . . . , ac , d} be our set of parameters.

An Algorithm

1 Compute Mi , the natural numbers that can be minimally expressed
as a sum of i elements of A \ {0}.

2 Eventually #Mi = d and Mi ⊆ d + Mi−1.

3 The first i when this occurs is the regularity.

Example (A = {0, 1, 3, 4})
M0 = {0}
M1 = {1, 3, 4}
M2 = {2, 5, 6, 7, 8}
M3 = {9, 10, 11, 12}
Regularity = 3
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A Harder Example

Example (A = {0, 2, 5, 7})
1 Compute the Mi :

M0 = {0}
M1 = {2, 5, 7}
M2 = {4, 9, 10, 12, 14}
M3 = {6, 11, 15, 16, 17, 19, 21}
M4 = {8, 13, 18, 20, 22, 23, 24, 26, 28}
M5 = {25, 27, 29, 30, 31, 33, 35}

...

2 #M5 = 7 and M5 ⊆ 7 + M4

3 Regularity = 5
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The General Case

Question

Even if we can compute regularity in specific cases, is there a bound on
regularity for all monomial curves, in terms of its parameters?
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Bounds on Regularity

Recall A = {0, a1, . . . , ac , d}, and IA is the kernel of the map from before.

Bounding regularity is a tough problem. Using fancy cohomological
machinery, Gruson, Lazarsfeld, and Peskine found the following bound:

GLP Bound

reg IA ≤ d − c + 1

With similar techniques, L’vovsky found the following improvement:

L’vovsky Bound

reg IA ≤ max
1≤i<j≤c+1

{ai − ai−1 + aj − aj−1}

T. Duff/T. Murayama/K. Schaefer (UCB) Geometric Invariants on Monomial Curves Stanford, July 31, 2013 12 / 15



Bounds on Regularity

Recall A = {0, a1, . . . , ac , d}, and IA is the kernel of the map from before.

Bounding regularity is a tough problem. Using fancy cohomological
machinery, Gruson, Lazarsfeld, and Peskine found the following bound:

GLP Bound

reg IA ≤ d − c + 1

With similar techniques, L’vovsky found the following improvement:

L’vovsky Bound

reg IA ≤ max
1≤i<j≤c+1

{ai − ai−1 + aj − aj−1}

T. Duff/T. Murayama/K. Schaefer (UCB) Geometric Invariants on Monomial Curves Stanford, July 31, 2013 12 / 15



Results

Are there combinatorial proofs?

Nitsche gave a combinatorial proof of
the GLP Bound.

We were able to show the following improvement:

Our result

reg IA ≤ d + 2−#{i , j ∈M1 ∪M2 | i − j = d}.

This is an improvement since #{i , j ∈M1 ∪M2 | i − j = d} ≥ c + 1.

T. Duff/T. Murayama/K. Schaefer (UCB) Geometric Invariants on Monomial Curves Stanford, July 31, 2013 13 / 15



Results

Are there combinatorial proofs? Nitsche gave a combinatorial proof of
the GLP Bound.

We were able to show the following improvement:

Our result

reg IA ≤ d + 2−#{i , j ∈M1 ∪M2 | i − j = d}.

This is an improvement since #{i , j ∈M1 ∪M2 | i − j = d} ≥ c + 1.

T. Duff/T. Murayama/K. Schaefer (UCB) Geometric Invariants on Monomial Curves Stanford, July 31, 2013 13 / 15



Results

Are there combinatorial proofs? Nitsche gave a combinatorial proof of
the GLP Bound.

We were able to show the following improvement:

Our result

reg IA ≤ d + 2−#{i , j ∈M1 ∪M2 | i − j = d}.

This is an improvement since #{i , j ∈M1 ∪M2 | i − j = d} ≥ c + 1.

T. Duff/T. Murayama/K. Schaefer (UCB) Geometric Invariants on Monomial Curves Stanford, July 31, 2013 13 / 15



A Comparison

Let A = {0, 1, 5, 8, 14, 19}.

GLP Bound

19− 4 + 1 = 16

L’vovsky Bound

(14− 8) + (19− 14) = 11

Our Bound

19 + 2− 6 = 15

But, the regularity is 5. The maximum degree of a generator of IA is 4.
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Further Directions

No one has been able to find a combinatorial proof of L’vovsky’s
bound except in very special cases.

We’ve been working on trying to improve our methods to get a bound
closer to L’vovsky’s.

Thanks!

T. Duff/T. Murayama/K. Schaefer (UCB) Geometric Invariants on Monomial Curves Stanford, July 31, 2013 15 / 15



Further Directions

No one has been able to find a combinatorial proof of L’vovsky’s
bound except in very special cases.

We’ve been working on trying to improve our methods to get a bound
closer to L’vovsky’s.

Thanks!

T. Duff/T. Murayama/K. Schaefer (UCB) Geometric Invariants on Monomial Curves Stanford, July 31, 2013 15 / 15



Further Directions

No one has been able to find a combinatorial proof of L’vovsky’s
bound except in very special cases.

We’ve been working on trying to improve our methods to get a bound
closer to L’vovsky’s.

Thanks!

T. Duff/T. Murayama/K. Schaefer (UCB) Geometric Invariants on Monomial Curves Stanford, July 31, 2013 15 / 15


