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Let T be a complete local (Noetherian) ring with maximal ideal M, P a nonmaximal
ideal of T, and C = {Q,, 05, ...} a (nonempty) finite or countable set of nonmaximal
prime ideals of T. Let {py, p,, ...} be a set of nonzero regular elements of T, whose
cardinality is the same as that of C. Suppose that p; € Q; if and only if i = j. We
give conditions that ensure there is an excellent local unique factorvization domain A
such that A is a subring of T, the maximal ideal of A is M N A, the (M N A)-adic
completion of A is T, and so that the following three conditions hold: (1) p; € A for
every i; (2) ANP = (0), and if J is a prime ideal of T with J N A = (0), then J € P
or J € Q; for some i; (3) for each i, p;A is a prime ideal of A, Q; N A = p;A, and
if J is a prime ideal of T with J € Q;, then J N A # p;A.
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1. INTRODUCTION

In this article, we explore the relationship between a local ring A and its
completion by studying how certain prime ideals of the completion of A intersect
with the ring A. Let A be a local (Noetherian) ring with maximal ideal M, and let A
denote the M-adic completion of A. We are interested in the map W: SpecA —>
Spec A given by Q — QN A. Since the extension A —> A is faithfully flat, we
know that W is surjective. In particular, we assume that A is an integral domain
and focus on the inverse image under ¥ of (0) and a countable number of height
one prime ideals of A. While the inverse image of (0) has been studied in, for
example, [1, 7, 9, 10], and the inverse image of height one prime ideals has been
studied separately in, for example, [2, 3], the only result we know of in which the
relationship between the inverse image of (0) and the inverse image of infinitely
many height one prime ideals has been studied is in [8]. After some preliminary
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definitions and results, we describe the main theorem in [§] and explain how it relates
to the main result in this article.

Let A be a local ring with maximal ideal M and P a prime ideal of A.
Following Matsumura in [9], we define the formal fiber ring of A at P to be A® "
k(P), where k(P) is the field Ap,/PAp. The formal fiber of A at P is defined to be
Spec(z ®,4 k(P)). Since there is a one-to-one correspondence between elements in
the formal fiber of A at P and prime ideals Q of A satisfying QN A = P, we will
abuse notation and say that such a prime ideal Q is in the formal fiber of A at P.
If A is an integral domain with quotient field K, we define «(A) to be the Krull
dimension of the ring A® 4 K. In other words, a(A) is the dimension of the formal
fiber ring at (0). Heinzer, Rotthaus, and Sally have informally asked the question.

Question 1.1. If A is an excellent local integral domain with o(A) > 0, then is the
set of height one prime ideals p of A satisfying «(A/p) = «(A) a finite set?

In Example 2.26, we provide an example showing that, in fact, this set can
be infinite. In other words, our result shows that we can control the relationship
between the dimension of the fiber ring at (0) and the dimension of fiber rings over
infinitely many height one prime ideals of an excellent local integral domain A.

The main result in [8] answers Question 1.1 when we do not require that A
be excellent. In particular, let 7 be a complete local unique factorization domain,
p a nonmaximal prime ideal of T, and F a set of nonmaximal prime ideals of 7.
Conditions are given in Theorem 23 of [8] to ensure that there exists a local unique
factorization domain A such that A=T, pnA=(0), QN A # (0) for all prime
ideals Q of T such that htQ > htp, and ANg = z,A for all g € F, where z, is a
nonzero prime element of 7. As an example, the author lets T = C[[X|, X,, ..., X,]],
where n > 3 and p = (X|, ..., X,_,), F an infinite set of height n — 1 prime ideals of
T such that |F| < |C|. Now, T, p, and F satisfy the confl\itions of Theorem 23 in [8],
so there is a local unique factorization domain A with A = T and such that a(A) =
n—2=ua(A/(gNA)) for every g € F. Since AN q = z,A for every q € F, we have
that ¢ N A is a prime ideal for every g € F, and so this example answers Question 1.1
if we drop the condition that A need be excellent. In this article, we provide a similar
example (see Example 2.26), but the A that we give is more difficult to construct
because it is, in fact, excellent. Although the basic outline for the construction in our
article is similar to the construction in [8], the technical details are quite different.

Theorem 2.24 is our main result and not only provides an answer for
Question 1.1, but it also gives an excellent unique factorization domain whose
formal fibers have other nonstandard properties. Again, let A be a local ring with
completion A. Suppose Q is a prime ideal of A satisfying the property that if
J is a prime ideal of A with OQNA=JNA=P, then J C Q. Then we say that
the formal fiber of A at P is local with maximal ideal Q. For standard excellent
local domains, local formal fibers seem to be very rare. For example, for the ring
R=C[xy, x5, ..., X,] (s, x,,...x,)» Where n > 2, no prime ideals of height less than n — 1
have a local formal fiber. The excellent local unique factorization domain A we
construct in Theorem 2.24, however, satisfies the very unusual property that all
of its prime ideals have a local formal fiber except for the zero ideal. Moreover,
we are able to describe in detail all of the formal fibers of A, also extremely
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unusual. Indeed, there are still many open questions about the formal fibers of even
the standard excellent local ring R=Cl[xy, x5, ..., X, ], x,.....
recently, in [4], that Heinzer, Rotthaus, and Wiegand proved that for the ring R =
Clxy, X5, -+ X,) (5, xy,....x,) €VETY maximal element of the formal fiber of R at (0) has
height n — 1.

We now describe our main result, Theorem 2.24, in detail. Suppose that T is
a complete local ring with maximal ideal M. Let P be a nonmaximal prime ideal
of T and C ={0Q,, 0,,...} a (nonempty) countable or finite set of nonmaximal
prime ideals of T. Let {p,, p,, ...} be a set of nonzero regular elements of 7 whose
cardinality is the same as the cardinality of C. Suppose also that p; € Q; if and only
if i = j. Let R, be the prime subring of T and R; = Ry[p,, py, ..., p;]fori=1,2,....
Define S = 7, R; if C is infinite and S = [J_, R; if C contains k < oo elements.
Suppose S N P = (0), SN P’ = (0) whenever P’ is an associated prime ideal of T and
for each i, (Q;\p;T)S N S = {0}, where (Q\p;,T)S ={qs|q € Q;, q & p;T and s € S}.
Assume that the following conditions hold:

(1) For each i if Q € Ass(T/p;T), we have Q C Q;;

(2) T is a UFD;

Q) T| = [T/M];

(4) T contains the rationals;

(5) Tp is a regular local ring and for all i, Ty, and (7/p,T),, are regular local rings.

We show that there exists an excellent local unique factorization domain A C 7T such
that:

(1) p; € A forall i;

(2) A=T;
(3) AnP = (0) and if J is a prime ideal of T with J N A = (0), then J € P or J C Q;
for some i;

(4) For each i, p;A is a prime ideal in A and has a local formal fiber with maximal
ideal Q,.

We go on to describe the formal fibers of A in detail. We show that the formal
fiber of A at p;A is the set {J € SpecT |J C Q;, and p; € J}, the formal fiber of A
at (0) is the set {PYU{J € SpecT |J < Q;, for some i and p; ¢ J}, and the formal
fiber of A at Q, where Q is a nonzero prime ideal of A and Q # p;A for all i is the
set {QT}. It follows that all formal fibers of A are local except the one at (0). We
then use Theorem 2.24 to produce Example 2.26, which answers Question 1.1.

In Theorem 2.20 we prove an analogous result to Theorem 2.24, where the ring
A we construct is not excellent. Also, in Theorems 2.21 and 2.25, we show that if the
set C is finite, we can remove the requirement that 7 be a unique factorization domain.

The idea of the construction of our excellent unique factorization domain A is
to first assume that a special subring of T, called a PC-subring (see Definition 2.1)
exists. Call this subring R. In particular, we guarantee that R contains p; for every i.
We then adjoin elements of 7 to R to build a chain {R,} of PC-subrings satisfying
the following properties:

(1) R,N P = (0) for every o;
(2) For all i and for all o, O, "R, = p;R

oo
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(3) For all o, we have that if [ is a finitely generated ideal of R,, then ITN R, = I;

(4) If J is a prime ideal of T such that J € P and J € Q, for every i, then given
an element, u 4+ J, of T/J, there exists an R, that contains a nonzero element of
u—+J.

Our excellent unique factorization domain A will be the union of the R,’s.
Condition (1) will guarantee that AN P = (0), so that we have P in the formal
fiber of A at (0). Condition (2) will ensure that AN Q, = p;A, so that we have O,
in the formal fiber of A at p,A. From conditions (3) and (4), we get that the map
A — T/M? is onto and that IT N A = I for every finitely generated ideal I of A.
This is enough (see Proposition 2.8) to conclude that the completion of A is 7.
Condition (4) also gives us that if J is a prime ideal of 7 with J ¢ P and J € Q for
all Q € C, then the map A — T/J is surjective. We will use this to show that all
formal fibers of A are as desired and that A is excellent. After proving Theorem 2.24,
we show that there are many complete local rings T for which PC-subrings, in fact,
do exist.

2. THE CONSTRUCTION

Before we begin constructing our ring A, we comment on the notation used in
this article. When we say that a ring is local, Noetherian is implied. A quasi-local
ring is one that has exactly one maximal ideal but that may not be Noetherian. To
denote a local ring 7 with maximal ideal M, we use the notation (7, M). We will use
the standard abbreviation UFD to denote a unique factorization domain. When we
refer to our final ring A, we mean the ring A from Theorem 2.24.

Definition 2.1. Let (7, M) be a complete local ring, P be a nonmaximal prime ideal
of T, and C ={Q,, Q,,...} a (nonempty) countable or finite set of nonmaximal
prime ideals of T. Let {p,, p,...} be a set of nonzero regular elements of 7 whose
cardinality is the same as the cardinality of C. Suppose also that p; € Q; if and only
if i = j. Let (R, RN M) be an infinite quasi-local subring of T such that p, € R for
every i = 1,2, ... and such that the following conditions hold:

(1) [R] <|T];
(2) RNP = (0) and if P is an associated prime ideal of T, then RN P’ = (0);
(3) For each i, (Q,\p,T)RN R = {0}, where (Q,\p;,T)R = {qr|q € Q;\p;T, r € R}.

Then we call the ring R a PC-subring of T with respect to the set {p,, p,, ... }. If the
set {p,, s, ...} 1s clear from the context, we will simply say that R is a PC-subring
of T.

Suppose that (7, M), C, P, and {p,;} are as in Definition 2.1. Then the Krull
dimension of T is at least one and so by Lemma 2.2 in [3], we have that |T| > |IR|,
where R denotes the real numbers. We also have that by condition (2), R contains
no zero-divisors of 7.

The idea for property (3) of PC-subrings is inspired by the definition of pT-
complement avoiding subrings of 7 in [2]. Indeed, to show that a certain subring of
T satisfies condition (3) of PC-subrings, we will often use ideas from proofs in [2].
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The following lemma shows that PC-subring properties are preserved under
localization.

Lemma 2.2. Ler (T, M), C, P, and {p;} be as in Definition 2.1. Let R be a subring of
T satisfying all conditions of PC-subring except that it is not necessarily a quasi-local
ring. Then R yngy is a PC-subring of T.

Proof. Conditions (1) and (2) of PC-subrings clearly hold for Rz So now
suppose that for some i, s € (Q\P;T)Rynr) N Riung)- We can then write s = f/g =
qf'/g with f, g, f', ¢ €R, g, ¢ €M, and q € Q,\p,T. Since R satisfies condition
(2) of PC-subrings, it contains no zero-divisors of 7. It follows that ¢'f = qgf’ €
(O \p,T)RN R = {0}. Since g’ # 0, we have f =0, and so s = 0, as desired. O

In the next lemma we show that taking certain unions of PC-subrings will
preserve the PC-subring properties.

Lemma 2.3. Let (T, M), C, P, and {p;} be as in Definition 2.1. Let Q) be a well-
ordered set, and let {R,|o € Q} be a set of PC-subrings indexed by Q with the
property that R, C R, for all o, f§ satisfying o < f. Let S = J,cq R,. Then S satisfies
all properties of PC-subrings except for possibly condition (1). Moreover, if |R,| <
for all o € Q, then |S| < A -sup{|Q|, R,}. In particular, if |Q| < 4, |R,| < A for all «
and |R,| = A for some o we have |S| = A

Proof. The cardinality conditions are clear. Condition (2) of PC-subrings holds for
S since it holds for every R,. We now show that property (3) in the definition of
PC-subring is satisfied. Suppose that for some i, we have f € (Q;\p;,7)S N S. Then
f =qg with g € (Q\p;T) and g€ S. So g, f € R, for some a, and hence f = gg €
(Q\p;,T)R, N R, = (0), which shows f = 0 as required. O

Recall that we want our final ring A to satisfy the property that AN Q; = p;A
for all i. While we cannot maintain this property at every step, we can show that
when the property is not satisfied for a PC-subring R, we can build a larger PC-
subring S that does satisfy SN Q; = p;S for all i. The next three lemmas show how
to do this. This idea was inspired by Lemmas 3.2, 3.4 and 3.5 from [3].

Lemma 2.4. Let (T, M), C, P, and {p;} be as in Definition 2.1. Suppose (R, R N M)
is a PC-subring of T and let {c,, c,, ...} be a set of elements of T whose cardinality
is the same as that of C. Suppose also that c; € p;T N R for every i. Then there exists a
PC-subring S of T such that RC S C T, ¢; € p;S for each i and |R| = |S|.

Proof. Since ¢, € p;T N R, we have that ¢, = p,u for some u € T. We claim that
Sy = R[u]rpjnm is @ PC-subring. Note that we have ¢, € p;S,, and |S,| = |R]|.
Condition (1) for PC-subrings is clearly satisfied by R[u]. Now suppose Q is
a prime ideal of T satisfying Q N R = (0). We claim that Q N R[u] = (0). Suppose
f € ONR[u]. Then f =r,u" +---+ rju+ry where r, € R. Now, pf =r,c] +---+
rieipit + rypt € ONR = (0). Since p, is a regular element of 7, we have that

f=0.
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Now suppose that for some i, we have f e (Q,\p;,T)R[u] N R[u]. Then
f=gs=z, where q € Q;\p;,T and s, z € R[u]. As in the above paragraph, we can
show that pfs and p{'z are elements of R for appropriate integers n and m. Now
let N = m + n, and note that pYf = pY¥gs = pf'z € (Q\p,T)RNR = {0}. As p, is a
regular element of T, we have that f = 0. Now using Lemma 2.2, we have that S,
is a PC-subring of T.

Note that ¢; € p,TNR C p,T NS, for every i and ¢, € p;S,. Now construct a
PC-subring S, of T using the above argument replacing R by S;, p; by p,, and ¢,
by ¢, so that §; € S, |S,| = |R], ¢; € p,T N S, for every i and ¢, € p,S,. Continue to
construct §; for j=1,2... so that c; € p;S;. Define S = Uz, S; if C is infinite, and
define S = Sk if C contams k < oo elements Then using Lemma 2.3 in the infinite
case, we have that § satisfies |S| = |R| and is a PC-subring. It is clear that R € SC T.
To see that ¢; € p;S, just note that ¢; € p;S; € p;S. O

Definition 2.5. Let ) be a well-ordered set and o € Q). We define y(x) = sup{f €
Q|p < a}.

Lemma 2.6. Ler (T, M), C, P, and {p;} be as in Definition 2.1. Suppose (R, RN M)
is a PC-subring of T. Then there exists a PC-subring S of T with |S| = |R| such that
RC SCTand p,TNRC p,S for each i.

Proof. Let Q = p,T N R and note that |Q| < |R|. Well order Q letting 0 denote
the first element and define R, = R. Note that as pyR C p;,T N R and R is infinite,
we have that () has no maximal element. We will inductively define R, for every
o€ Q. Let a € Q, and assume that for all § < o, Ry has been defined and satisfies
|Rg| = |R| and 6 € p,R for all 6 < f. We now work to define R,.

If y(a) < o, then obtain R, from R, using Lemma 2.4 with ¢, = y(«). Then
R, is a PC-subring of T and |R | = |R, (1)| = |R|. Since y(») € p;R, and R,,) C R,,
using the induction hypothesis, we see that 6 € p;R, for all § < a.

On the other hand, if y(«) = o define R, = U;_, Rs. Then by Lemma 2.3, R,
is a PC-subring and |R,| = |R|. We also have, by induction, that é € p;R, for all
0 < o.

Now, let S = U,cq R,- Then by Lemma 2.3, S, is a PC-subring with |S,| =
|R|. If r € pyT NR, then r = y(a) for some a in O with y(a) < a. By construction
repR, € pS,,andso pyTNRC p,S,.

Now, repeat the above construction replacing R by S, and p, by p, to
construct a PC-subring S, so that S; C S,, |S,| = |R|, and p,T NS, C p,S,. In this
manner, define S, for k=2,3... so that S,_, €S, |S;|=|R|, and p,TNS,_, C
DS Now let S =J;_, S, if C is infinite, and let S =S, if C contains n < oo
elements. By Lemma 2.3, S is a PC-subring and |S| = |R|. Note that if f € p,T N R,
then f € p,TNS,_, C p;S. O

Lemma 2.7. Let (T, M), C, P, and {p;} be as in Definition 2.1. Suppose (R, R N M)
is a PC-subring of T. Then there exists a PC-subring S of T with |S| = |R| such that
RCSCTandpTNS =p,S forall i.

Proof. Let R, = R. We define R, for i = 1,2, ... by induction. Assume R, ; has
been defined so that it is a PC-subring and |R,_;| = |R|. Now use Lemma 2.6
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to find a PC-subring R; with p,TNR,; C p;R, for all j=1,2... and so that
|R;|=|R;_;|=|R|. Let S=;Z,R;. By Lemma 2.3 we know that S is a PC-
subring with |S| = |R|. Further, if ¢ € p,7NS for some i, there is an ne N
such that ce p,TN R, € p;,R, | € p;S. Therefore, p,T NS C p;S, and it follows that
pTNS=pSforalli=1,2,.... O

If R is a PC-subring of T, then Q; N R C p,T for all i. If we have the additional
property given in Lemma 2.7 that p,7 N R = p,R, then Q, N R = p,R. We also have
in this case that, since Q; is a prime ideal of T, p;R is a prime ideal of R.

Eventually, we show that the completion of our final ring A is T. To do this,
we use the following very useful proposition.

Proposition 2.8 ([6], Proposition 1). If (A, M N A) is a quasi-local subring of a
complete local ring (T, M), the map A —> T/M? is onto and IT N A =1 for every
finitely generated ideal I of A, then A is Noetherian, and the natural homomorphism
A —> T is an isomorphism.

To control the formal fiber of A at (0) and the formal fibers at the ideals p;A,
as well as to ensure that the completion of A is T, we adjoin elements of T to a PC-
subring of T so that they satisfy very specific transcendental properties. Lemma 2.9
allows us to do this. In many of the following results, to satisfy the cardinality
condition of this lemma, we use condition (1) of PC-subrings.

Lemma 2.9 ([5], Lemma 3). Let (T, M) be a local ring. Let C C SpecT, let I be an
ideal such that I ¢ P for every P € C, and let D be a subset of T. Suppose |C x D| <
|T/M|. Then I ¢ \J{(P+7r)|P € C,re D}

Since our goal is for any prime ideal of T not contained in P or a Q, to not be
in the formal fiber of p;A or (0), if J is a prime ideal of 7 such that / £ Pand J £ Q
for all Q € C, then we want ANJ # (0) and AN J # p,A for every i. We also want
the map A — T/J to be onto. In the proof of Lemma 2.10, we show that, given
a PC-subring R, we can construct a larger PC-subring S that contains an element
from a specific coset of 7/J and so that the property that p,7 NS = p,S for all i is
satisfied.

Lemma 2.10. Ler (T, M), C, P, and {p;} be as in Definition 2.1 with the extra
condition that for each i if Q € Ass(T/p;T), then Q C Q,. Suppose further that |T| =
|T/M|. Let (R, RN M) be a PC-subring of T such that p;T N R = p,R for each i, and
let u+J € T/J where J is an ideal of T with J ¢ P and J € Q for all Q € C. Then
there exists a PC-subring S of T meeting the following conditions:

() RESCT;

() [S] = IR];

(3) u+J is in the image of the map S — T/J;
4) IfueJ, then SNJ ¢ Q, for all Q € C;
(5) p,T NS = p;S for all i.

Proof. For each P’ € AssT U {P}, let Dp be a full set of coset representatives of
the cosets 7 + P’ that make (u + 1) + P’ algebraic over R. For each Q, € C let D,
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be a full set of coset representatives of the cosets t + Q; € T/Q; with ¢ € T that make
(u + t) + Q, algebraic over R/(RN Q;). Let G be the set C U {P} U AssT, and note
that if Q € G, then 1+ Q # ¢ + Q implies that (u+t) + Q # (u+ 1) + Q. Also, the
algebraic closure of R/(R N Q) in T/Q has cardinality at most |R| and so [D | <|R|.
Let

D:= D
QeG

Then we have |D| < |R| < |T| = |T/M]|.

We now claim that if P’ is an associated prime ideal of 7, then J € P'. Suppose
that b € P'. Then b is a zero-divisor, so bc = 0 for some ¢ € T with ¢ #0. If ce p, T,
then we can write ¢ = pjc’ for some positive integer n and ¢’ € T with ¢’ ¢ p;T.
Now, 0 = bc = bp/c’, and as p, is not a zero-divisor, we have bc’ = 0. Thus we may
assume that bc = 0 for some ¢ & p,T. Now, b(c + p;,T) =0+ p,T in T/p, T with ¢ +
p T # 0+ p,T. It follows that b € Q for some Q € Ass(7/p,T). By our hypothesis,
we have that b€ Q € Q,. Hence, P’ € Q,. Since J € Q,, we have that J € P’ as
desired.

Since |G x D| < |R| < |T| = |T/M|, we can now employ Lemma 2.9 with I =J
to find an x € J such that x ¢ U{r+ Q | r € D, Q € G}. We claim that S’ = R[u +
X](Rputxjoary 18 @ PC-subring. It is clear that |$'| = |R|. Further, note that since
(u + x) + P’ is transcendental over R for all P’ € Ass T U {P}, we know if f = r,(u +
x)"4+--+r, € Rlu+ x]N P for some P' € AssT U {P}, then r, e RN P’ = (0) for
all i and so f = 0. We thus have R[u + x] N P’ = (0) for every P’ € AssT U {P}.

We now claim that (Q\p,T)R[u+ x] N R[u+ x] = {0} for each i. First,
suppose we have f € (Q\p,T)R[u+ x]N R[u+ x] for some i with f # 0. Then
we have f=r,(u+x)"+ - +ry=q(s, (u+x)" +---+s(u+x)+s, for some
qeQ\p;,T andsome ry, ..., r,, Sy, ...,S, € Rwithr, #0forsomel <k <n.Letm
be the largest integer such that r; € (p,7)" for all 1 < j < n (this exists by the Krull
Intersection theorem), and let m’ be the largest integer such that s, € (p,T)" for
all 1 < j < wn'. Then since p,T N R = p,R, we have (p,7)" N R = p"R (and similarly
for m’), and we can write

F=p"r4x)"+-+7) =gp" (sL(u+x)" +---+5p)

for some r, ..., 7,8, ...,5, €R.

By the maximality of m and m’, we know there is an [ such that r; ¢ p,T
and a j such that s} ¢ p;T. Since (Q,\p;7)RN R = {0}, we have that ;N R € p,T,
and thus r/, s; € Q; N R. Since (u + x) + Q; is transcendental over R/(R N Q;) for all
i=1,2... we, therefore, know that

nw+x)"+--+rut+x)+ry &0,
5:1/(M+x)"’+-~+s’1(u+x)+s{)§é 0..

Now suppose that m < m’. Since p; is not a zero-divisor, we may cancel it on
both sides of our equation to get

P4 x)" 4 A x) 1= gp (s, (A X)) (e x) - sp).
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But the left-hand side is not in Q,, while the right-hand side is clearly in Q;, which
is a contradiction.
On the other hand, suppose m > m’. Then canceling, we have

P (A x)" A G x) 4 ) = q(s) (e x)" s () ).

The left-hand side is clearly in p,T, but since s/, (u + x)" + -+ s} (u + x) + s} is
not in Q,, it is not in any associated prime of p,T, and so is not a zero-divisor
of T/p,T. Since g ¢ p;,T, we have that the right-hand side is not in p,T, which is
a contradiction. Thus we have ((Q\p;T)R[u + x]) N R[u + x] = {0}. We now use
Lemma 2.2 to conclude that S’ is a PC-subring of T.

We now employ Lemma 2.7 to find a PC-subring S with ' €S C T and
|S| = |S'| = |R| such that p,T NS = p,;S for each i. Since §' € §, the image of S in
T/J contains u + x + J = u + J. Furthermore, if u € J, then u + x € J N S, but since
(u + x) + Q; is transcendental over R/(RN Q;) for each i € {1,2, ...}, we have u +
x¢& Q;s0JNS ¢ Q, for all i. O

Remark 2.11. Note that from the proof of Lemma 2.10 we have that if R is a PC-
subring of T and x + Q; € T/Q, is transcendental over R/(Q; N R) for every i, then
(Q,\p;T)R[x] N R[x] = {0} for every i. We also have that if P’ is a prime ideal of T
with RN P’ = (0) and x + P’ € T/P' is transcendental over R, then R[x] N P = (0).

Remark 2.12. By the proof of Lemma 2.10 if the condition Q € Ass(T/p,T)
implies Q C Q, is satisfied, then Q, contains all associated prime ideals of 7.

Recall that to show that the completion of A is T, we use Proposition 2.8. In
particular, we need IT N A = [ for all finitely generated ideals I of A. This is perhaps
the most challenging part of the proof. Certainly, I € IT N A trivially holds. Given a
PC-subring R, we show that there is a larger PC-subring S satisfying IT NS = I for
all finitely generated ideals 7 of S. Theorem 2.13 is the first step in doing this. The
next series of results is devoted to constructing this PC-subring S, and the result is
finally given in Lemma 2.19.

Theorem 2.13. Let (T, M), C, P, and {p;} be as in Definition 2.1 with the extra
conditions that T is a UFD and |T/M| = |T|. Let (R, RN\ M) be a PC-subring of T
such that p,T N R = p,R, for each i. Suppose I is a finitely generated ideal of R, and
let ¢ € IT N R. Then there exists a PC-subring S of T meeting the following conditions:

() RSSCT;

(2) [SI=IRl;

3) cels;

4) p;TNS = p,;S for each i.

The proof of Theorem 2.13 involves many steps. To make reading the proof
easier, we break it up into several lemmas.

Lemma 2.14. Theorem 2.13 holds if I is generated by one element.
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Proof. Suppose I = aR. If a =0, then ¢ = 0 so § = R is the desired PC-subring. If
a # 0, then ¢ = au for some u € T. We claim that " = R[u]g,jnm) 18 @ PC-subring
of T. First note that clearly |S’| = |R| < |T|. Suppose f € PN R[u]. Then f = r,u" +
-t ru+ry€P,and a"f =r, "+ +rca” ! +rya" € PNR = (0). Since a € R
and R contains no zero-divisors of 7, we have f = 0. It follows that R[u] N P = (0).
A similar proof shows that R[u] satisfies the second part of condition (2) of PC-
subrings. Now suppose f € ((Q;\p;T)R[u]) N R[u] for some i. Then f = gg, where
q € Q,\p;T and g € R[u]. Since ¢ = au € R, from the argument above, we know
there exists an m such that a”f € R and a"g € R. Thus we have a”f € (Q,\p;,T)RN
R = {0}, and since R contains no zero-divisors of 7, we know f = 0. Therefore,
(Q\p;T)R[u] N R[u] = {0} for all i. By Lemma 2.2, we have that §’ is a PC-subring.
Now use Lemma 2.7, with R = S’ to construct the desired S. O

To prove Theorem 2.13 when [ is generated by two elements, we first show
that it suffices to prove Theorem 2.13 if the generators of I share no associated
prime ideals. To do this, we use the following lemma.

Lemma 2.15 ([7], Lemma 4). Suppose (T, M) is a local ring with |T/M]| infinite.
Let C;, C, C SpecT, u,w € T such that u & P for every P € C, and w & Q for every
Q € C,. Also, suppose D, and D, are subsets of T. If |C, x D,| < |T/M| and |C, x
D,| < |T/M|, then we can find a unit x € T such that ux ¢ \J{P +r|P € C,, r € D}
and wx™' ¢ J{Q+a|Q € Cy,a € D,}.

Lemma 2.16. To prove Theorem 2.13, it suffices to prove it for the case I =
V15 Yas -+ » Yip) Where m > 2 and Ass(T/y,T) N---N Ass(T/y, T) = 0.

Proof. Note that by Lemma 2.14, Theorem 2.13 holds for m = 1. Now suppose
I=0...,y,) with m >2 and Ass(T/y,T)N---NAss(T/y,T) #¥. Since T is a
UFD, we know there is a greatest common divisor of y,, y,, ...y, call it x. By our
assumption, x is not a unit. Write x = (' - - - r)w where each r; = p; for some i,
the e,’s are positive integers, and so that w ¢ p,T for every i. If no p; divides x, then
set s = 1 and r;, = 1. We claim that w ¢ P and that for every i, we have w ¢ Q,. Note
that y, = xz; = (r{' - - - r»)wgz, for some z, € T, so if w € P, then y, € PN R = (0),
a contradiction. Now suppose that for some i, we have w € Q,. Note that

=" rwe,

o= (' )wz,

Y = (1" -8 wz,,

for z;,25...,2, € T. If p; divides wz, for all k =1,2,...,m, then p;(r;"---r%)
divides Y for all j=1,2...,m. Since x is a greatest common divisor for the
y;’s, we have that p;(r;" ---r{) divides x = (r}" - - - r&)w. Hence p,u = w for some
ueT. But this contradicts that w ¢ p,7. So we have that there is a j such that
p; does not divide wz;. It follows that y; = (wz;)(r}" - - r&) € (Q,\p;,T)RN R = {0},
a contradiction. So we have shown that w ¢ P and that for every i, we have w ¢ Q,.
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Now if P" is a prime ideal of T, let D, be a full set of coset representatives
for those cosets u + P’ € T/P' such that u 4+ P’ is algebraic over R/(RN P’). Let G =
CU{P} and D = Up; D(p. Now use Lemma 2.15 to find a unit 7 € T satisfying

wt & | J{P"+r|P €G,reD}.

Then we have that wr 4+ P’ is transcendental over R/(RN P’) for all P' € G. Now
let R = R[wt]. By Remark 2.11 and Lemma 2.2, we have that S, = Riz, is a PC-
subring. Note that since 7 is an integral domain, the second part of condition (2) of
PC-subrings is satisfied automatically. We also have that xz = (r]" - - - r%)(wt) € S,.
Now, y, € (xt)T N S,, so use the proof of Lemma 2.14 to construct a PC-
subring S, so that S, € S, € T, |S,| = |Sy| = |R|, and y, € (x1)S,. Now, y, € (x1)T N
S, so repeat this construction to find a PC-subring S, so that S, € S, C T, |S,| =|R|,
and y, € (x1)S,. Keep going, so that for every j with 1 < j <m, we have §; | C
S, CT, |S;|=|R|, and y; € (x1)S;. Note that c € (x/)T N S,,, so we can do the
construction one more time to construct a PC-subring S” satisfying RC §” C T,
|S”| = |R|, c € (xt)S”", and y; € (xt)S" for all j satisfying 1 < j < m. Use Lemma 2.7 to
construct a PC-subring S* satisfying the above properties and that p,7 N §* = p,S* for
each i. Let ¢ = ¢/(xt) and y; = y;/(xt) for j=1,2...,m. Then ¢’ € (y,...,y,)T N
S* and Ass(T/y;T)N---NAss(T/y, T) =¥. So we can use our assumption that
Theorem 2.13 holds in this case to find a PC-subring S such that S* € § € T, |S| = |S*|,
e, ....y,)S, and p,T NS = p,S for every i. It follows that RC S C T, |S| = |R|,
and ¢ = (xr)c’ € (x0)y}, ... (xD)Y,)S = V1, - -5 Y)S. O

Lemma 2.17. Theorem 2.13 holds if I is generated by two elements.

Proof. We now assume I = (y,, y,). By Lemma 2.16, we may reduce to the case
Ass(T/y, T) N Ass(T/y,T) = @. Our proof follows closely the proof of Lemma 4
in [5]. Now ¢ = y,t; + y,t, for some t,,t, € T. We write ¢ = (t; + ty,)y, + (¢, —
ty,)y,, where we will choose ¢ € T in a strategic way later. Let x; = ¢, + ty, and x, =
t, —ty,. Then we have ¢ = x;y, + x,),. Let R = R[x;, y;'] N R[x,, y;'] and note
that since x; = (¢ — x,¥,)/y, and x, = (¢ — x,¥,)/y,, we have x,, x, € R" and so ¢ €
(1, »2)R'.

We now show that R' C T. Note that R’ C T[y;'] N T[ys']. Let f € Tly;'1N
T[y;']. Then f = t/y} for some ¢t € T and some nonnegative integer n. We also have
that f = s/y;" for some s € T and some nonnegative integer m. It follows that sy} =
ty]' € T, and since y, and y, are relatively prime in 7, we have that y" must divide
sin T. Hence, f € T, and so R' C T[y;'|NT[y; '] =T.

We will now work to define ¢. Let G = CU{P}. If y,,y, € Q; for some i,
then y,,y, € Q;NR C p,T. This contradicts that Ass(7/y,T) N Ass(T/y,T) = . So
for every Q € G, we have y, or y, is not in Q. Now, let Q € G, and suppose
y; ¢ Q. Define D, to be a full set of coset representatives of the cosets ¢+ Q €
T/Q that make x, + Q = (¢, — ty,) + Q algebraic over R/(Q N R). Suppose t + Q #
'+ Q. Then if (1, —ty,)) + Q= (t, — 'y;) + Q, we have y,(t — ) € Q. As y, € O,
we have t+ Q =+t + Q, a contradiction. It follows that different choices of the
coset t+ Q will give us different cosets x, + Q. If y, € Q, then y, € Q. In this
case, let D, be a full set of coset representatives of the cosets 7+ Q € T/Q that
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make x, + Q= (t, +ty,) + Q algebraic over R/(Q N R). Using the same argument
as above, we have that different choices of the coset r+ Q will give different
cosets x; + Q. Let D= Uy D). Then we have |D x G| < |T|=|T/M|. Now
use Lemma 2.9 with I = M to find 7 € T such that t U{(Q+r)|Q € G, r € D}.
It follows that for this 7, if Q € G with y, & Q, then x, + Q is transcendental over
R/(Q N R) and otherwise, y, ¢ Q and x, + Q is transcendental over R/(Q N R).
Clearly, |R'| = |R|. We now show that R’ satisfies conditions (2) and (3) for
PC-subrings. Let f € R"N P. Then multiplying through by a high enough power
of y,, we get y}f € PN R[x,]. But by the way we chose ¢, x, + P is transcendental
over R, so PN R[x,] = (0). It follows that f = 0. Now suppose that for some i,
we have g € (Q,\p;,T)R' N R'. We know that y, € O, or y, € Q,. Without loss of
generality, suppose y, € Q,. Then x, + Q; is transcendental over R/(R N Q;). By the
argument in the proof of Lemma 2.10, we have that (Q,\p,T)R[x,] N R[x,] = {0}.
Now, g = gz for some ¢ € (Q,\p;T) and z € R". Multiplying through by a high
enough power of y,, we get yjg = ¢(y{z), where yjg € R[x,] and y{z € R[x,]. So we
have yig € (Q,\p,T)R[x,] N R[x,] = {0}. It follows that g = 0. Now by Lemma 2.2,
we have that §" = R{,/z is a PC-subring. Since ¢ € (y, y,)R’, we have ¢ € (y;, »,)S".
Now use Lemma 2.7 to get the desired PC-subring S. |

We are now ready to prove Theorem 2.13. We will induct on the number of
generators of I.

Proof of Theorem 2.13. Letl = (y,,...,y,). We will induct on m. If m = 1, then
by Lemma 2.14 the theorem holds. Likewise, if m = 2, then the theorem holds by
Lemma 2.17. So suppose m > 2, and assume the theorem holds for all ideals with
m — 1 generators. Our proof follows the proof of Lemma 4 in [5] closely. We will
construct a PC-subring S’ so that R C S’ C T, |S'| = |R|, there is an element ¢* € §’
and an ideal J of §’ generated by m — 1 elements and ¢* € JT. S’ will also satisfy
the condition that S'Np, T = p,S" for all i € {1,2,...}. Then by our induction
assumption, there is a PC-subring S satisfying ' € SC 7T, |S| = |S|, p,T NS = p;S
for each i, and ¢* € JS. We will then show that ¢ € IS, proving the theorem.

We now work to construct S'. Let J = (y;, 5, - .. ¥,_1)R. Since ¢ € IT, we can
write ¢ = y;t; + -+ +y,t, for some #; € T. We first deal with the case where there
is no Q; satistying {y,, ¥, ...»¥,,_1} € Q;. Now let v=1t¢, +u;y; + -+ Uy 1 Y1
where we will choose the u; € T in a strategic way later. Let R' = R[v] and ¢* =
¢ —y,,v. Then

= (yltl +e 4+ ymtm) - ym(tm + uy +e 4+ um—]ym—l)7

and so we have that ¢* € JT. To choose the u;’s, let G = C U {P}. Suppose Q€ G
with y; & Q. Then let D, be a full set of coset representatives for the cosets z + Q
that make (7, +zy;) + Q algebraic over R/(RN Q). Let D = Upcq,y,¢0 D). Use
Lemma 2.9 to find u, so that (¢,, + u,y,) + Q is transcendental over R/(Q N R) for
all Q € G with y, ¢ Q. Continue this process to get a set {u,, ..., u,,_,} so that (¢, +
wy,+ -+ u,_1y._1) + O =v+ Q is transcendental over R/(RN Q) for all 0 € G.
Since there is no Q, satisfying {y;, 2, ..., ¥,,_1} € O, such a set {u;, uy, ..., u,,_;}
exists. By Remark 2.11 and Lemma 2.2, we have that $” = Rz, is a PC-subring of
T. Now use Lemma 2.7 to get the desired PC-subring §’. Use induction as explained
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in the previous paragraph to get the PC-subring S. We are left to show that ¢ € IS.
But this is clear since ¢ = ¢* 4+ y,,v, c* € JSand v € §'.

On the other hand, suppose that {y,,...,y,_;} € Q; for some i. If this were
true for infinitely many i’s, then y, € Q; N R C p,T for infinitely many i’s. But since
p; € Q; if and only if i = j, this implies that y, is in infinitely many height one prime

ideals of T, a contradiction. So we have that {y,,...,y,_,} € Q, for finitely many
i’s. For such an i, we hdve Yy, € Q;NRC p,TNR=pR, and so we can write y; =

p;rj for all j =1, 2 — 1, where r; € R If {r}, ..., 1, |} C O, repeat this until
we getthatyj = pt s; forall] =1,2...,m—1wheres; € Rand {s,...,s, 1} £ O.
If {sy,....8,_;} € Ql, then repeat the dbove procedure for p,. Eventually, we get
that y; = dr; for every j=1,2,...,m — 1 where d is a (finite) product of the p;’s
r,€ Rand {r,..., 1, ,} £ Q, for alli. Now let w=t;r, +---+1,_y7,,_;. Then ¢ =

LY + O+ by V1) = LY +d(try + -+ 1,7 y) = 1, + dw. So we
have that ¢ € (y,,,d)T N R. Use Lemma 2.17 to find a PC-subring R" of T such
that RS R T, |[R|=|R|, p,TNR = p,R for all i, and c € (y,,, d)R’. Write ¢ =
XY, + x,d with x|, x, € R’. Note that x; and x, come from Lemma 2.17 where, since
¢ =t,y, +dw, w takes the role of z,, d the role of y,, y,, the role of y,, and 7,
the role of 7, in Lemma 2.17 so that, in particular, x, = w — ty,, for some ¢t € T.
By the way, w is defined, we have that x, = w—1ty,, € (r,ry, ..., Fi_ 1> ¥)) TN R

Now let I* =(r, ..., rp_y, v, )R and J*=(r,...,r,_)R. Then {r,...,r,_;} &
Q, for all i. So we can use the result from the previous paragraph with ¢ = x,
to construct a PC-subring §’ so that R € §' € T, |S’| = |R’|, and an element ¢* =

Xy —y,v € § with ¢* € J*T and v € §’. Also, we have that §' N p,T = p,§ for all i.
Now we use our induction assumption as explained in the first paragraph of this
proof to get S. This gives us that ¢* = x, — y,,v € J*S. We have left to show that
¢ € IS. We have that ¢ = x,y,, + x,d = x;y,, + (¢* + y,,v)d = ¢*d + (x; + vd)y,,. As
c* € J*S, we have that ¢*d € (y,...,y,_1)S. We also have that x, +vd € S and
so ¢ € IS as desired. |

Theorem 2.18. Let (T, M), C, P, and {p;} be as in Definition 2.1 with the set C
containing k < oo elements. Then Theorem 2.13 holds even if we remove the condition
that T is a UFD.

Proof. We induct on the number of generators of I. Suppose [ is generated by m
elements. If m = 1, then we can use Lemma 2.14 since we did not use in that proof
that 7 was a UFD. So for the rest of the proof, we assume m > 1.

Let I = (y1, 2, --->Y,)- First suppose that y, € p;T for all j=1,2,....m
Then since p;T N R = p;R, we can write y; = p,y; for each j to obtain I = p,I’,
where I' = (), ¥, ...,¥,). Now ce p,TNR=pR, so we have ¢/p, €l'. We
continue this process (which must terminate at some point since 7 is Noetherian)
until we have an ideal J; = (zy, 2, . . ., 2,,) satisfying z; & p;T for some j and such
that there is a d; € R so that d,J, =1 and ¢/d, € J,. Repeat this process with the
y;’s replaced by the z;’s and p, replaced by p, to find an ideal J, = (w;, w,, ..., w,
satisfying w; & p|T, w; & p,T for some j and [ and such that there is a d2 SO
that d,J, = I and c/d, € J,. Continue until we get an ideal J, = (u;, u,, ..., u,,)
satisfying the condition that given p,T, there is a j such that u; & p;T and so that
there is a d, with d,J, = I and c/d, € J,. If there exists a PC-subring S such that
c/d, € J,S, then c € d,J,S =1S. Thus it suffices to prove the theorem assuming
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there is no p; with y; € p,T for all j=1,2, ..., m. Note that since p,;T N R = p;R,

this is the same as assuming there is no p; with y, € p,R forall j=1,2,..., m. We
assume this for the rest of the proof.
We now show that we can find a set {z,,2;,...,2,} C R such that I =

(215220 ---szy)and zy € p;Rforall i=1,2, ..., k. If y, & pRforalli=1,2, ...k,
then choose z; = y;, and we are done. Now, set x; =y, and define n(x;) = {p, | x; ¢
p;R}. Let x; = x,_y + ny;, where r; =[], i) Pi- We claim that I = (x,,, y,, ..., ¥,)
and x, € p;R for all i =1,2,...,k. The first statement is clear, since x,, =y, +
Ry, +--+r,y, €l and y, =x, —ry,— - — 1,V € (X, Y25 -- -, ¥,). TO prove
the second statement, fix i, and choose the smallest j such that y; & p;R. We
know such a j exists from the previous paragraph. We claim x;¢p,R. If j =1,
then x, € p;R. Now suppose j > 1. Then by the choice of j, we have that y, € p,R
for all £<j, so x;;, € p;R. Now x; =x; ; +r;y;. We know that y, ¢ p,R and
by construction of r;, we have r; ¢ p;R. Since Q; N R = p;R, we know p;R is a prime
ideal of R. It follows that r;y; & p;,R and so x; & p,R. Now, x;,;, = x; +r;,,y;;, and
riy1 € p;R. 1t follows that x;,, & p;R. Continue until we get that x,, & p;R. Choosing
7y =x, and z; =y, for i = 2,3, ..., m we get the desired set {z;, 25, ..., 2}

By the above paragraph, we can assume that I = (y, y,,...,¥,,) and y, € p;R
for all i=1,2,...,k Note that this implies y, & O, for every i. Since ¢ € IT N R,
we can write ¢ = t;y, +--- +t,, for t, € T. Set x; = t; + y,t and x, = t; — y,t for
some t € T which we will choose later. Now we have ¢ = x;y; + x,y, + 353 + - +
t,y,. Our goal is to adjoin x, to our subring R without disturbing the PC-subring
properties.

Let G=AssTU{P}UC. For each Q € G, let D, be the full set of coset
representatives of the cosets 7 + Q that make #, 4+ y,¢ + Q algebraic over R/(R N Q).
Let D = Upeg D(g)- Note if (1, + y,1) + O = (#; + y,t') + Q, then y,(t — #') € O, and
since y, ¢ Q, we have t + Q = ' + Q. Thus for all Q € G, we have that if 1+ Q #
t' 4+ Q, then (¢, + y,t) + O # (¢, + y,t) + Q. This argument shows that |D| = |R| <
IT| = T/M|.

We now use Lemma 2.9 with I =T to find an element ¢ € T such that ¢ ¢
U{r+ P|r € D, P € G}. Thus we have that x; + Q = t, + y,t + Q is transcendental
over R/(RN Q) for all Q € G. So by the proof of Lemma 2.10 we have §' =
R[x{](gx,10m) 18 @ PC-subring. Now use Lemma 2.7 to get a PC-subring so that p,7 N
" = p,S” for all i. Let J = (5, ..., y,)S” and ¢* = ¢ — y,x,. Clearly, ¢* € JTNS",
and so by induction, we can find a PC-subring S of T such that " € S € T and
c*e€JS.Soc* =85y, 4+ +s,y, for some s; € S. Therefore, c = x;y, + 8,5, + -+ +
S,Ym € 1S and the result follows. d

Lemma 2.19. Let (T, M), C, P, and {p;} be as in Definition 2.1 with the extra
condition that for each i if Q € Ass(T/p,T), we have Q C Q,. Suppose further that T
is a UFD and |T| = |T/M|. Let (R, RN M) be a PC-subring of T such that p,;,T "R =
piR for every i, let J be an ideal of T with J £ P and J € Q for all Q € C, and let
u+J e T/J. Then there exists a PC-subring S of T such that:

(1) RESSCT;
() IS] = IR];
(3) u+J is in the image of the map S — T/J;
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(4) IfueJ, then SNJ ¢ Q forall Q € C;
(5) For every finitely generated ideal I of S, we have ITN S = 1.

Proof. We first apply Lemma 2.10 to find a PC-subring R’ of T satisfying
conditions 1, 2, 3, and 4 and such that p,7T N R = p,R’ for each i. We will now
construct the desired S such that S satisfies conditions 2 and 5 and R’ € § C T which
will ensure that the first, third, and fourth conditions of the lemma hold true. Let
QO ={(, )| is a finitely generated ideal of R" and ¢ € IT N R'}. Letting I = R', we
see that [Q}| > |R'|. Since R’ is infinite, the number of finitely generated ideals of R’
is |R’|, and therefore |R'| > |€}|, giving us the equality |R'| = [Q}]. Well order € so
that it does not have a maximal element and let 0 denote its first element. We will
now inductively define a family of PC-subrings of T, one for each element of (). Let
Ry =R, and let « € (). Assume that R, has been defined for all f < o and that p,7 N
Ry, = p;R; and |R;| = |R| hold for all § < o. If y(2) <« and y(a) = (I, ¢), then define
R, to be the PC-subring obtained from Theorem 2.13 so that ¢ € IR,. Note that
clearly p,T "R, = p;R, and |R,| = |R,,)| = |R|. If on the other hand y(x) = «, define
R, =Uj-, Rs. By Lemma 2.3 R, is a PC-subring with [R,| = |R|. Furthermore, if
t € p,;T N R, for some i, then t € R; for some f < o, and so t € p,T N Ry = p;R; C
p;R,. Thus p,T "R, = p;R,.

Now let Ry = U,cq R,- We see from Lemma 2.3 that R, is a PC-subring and
IR,| = |Ry| = |R]|- Also, since we know by induction that p,7T N R, = p;R, for all « €
Q) we see by the same argument made at the end of the last paragraph that p,7 N
R, = p;R, for all i. Furthermore, notice that if [ is a finitely generated ideal of R,
and ¢ € IT N R, then (I, c) = y(a) for some o € Q with y(x) < a. It follows from
the construction that ¢ € IR, C IR,. Thus IT N R, C IR, for every finitely generated
ideal I of R,,.

Following this same pattern, build a PC-subring R, of T with |R,| = |R,| =
|R| and p,T N R, = p;R, for all i and such that R, C R, C T and IT N R, C IR, for
every finitely generated ideal I of R,. Continue to form a chain Ry S R, C R, C---
of PC-subrings of T such that IT N R, € IR, for every finitely generated ideal I of
R, and |R;| = |R,| for all j.

We now claim that § = |J;2, R; is the desired PC-subring. To see this, first
note RC S CT and that we know from Lemma 2.3 that S is indeed a PC-
subring and |S| = |R|. Now set I = (y;,¥,,...,¥%)S, and let ¢ € ITNS. Then

there exists an N € N such that ¢, y,,...,y, € Ry. Thus c€ (y;,...,y )TNRy C
1» ---» Ye)Ry41 €1S. From this it follows that IT N S = I, so the fifth condition of
the statement of the lemma holds. |

We are ready to prove the version of our main result, where we do not require
that A be excellent.

Theorem 2.20. Let (T, M), C, P, and {p;} be as in Definition 2.1 with the extra
condition that for each i if Q € Ass(T/p,T), we have Q < Q,. Suppose further that T
is a UFD and |T| = |T/M|. Suppose that a PC-subring of T, (R, RN M), exists. Then
there exists a local UFD A C T such that:

(1) p; € A for all i
2) A=T,
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(3) ANP =(0) and if J is a prime ideal of T with J N A = (0), then J € P or J C 0O,
for some i,

(4) For each i, p;A is a prime ideal in A and has a local formal fiber with maximal
ideal Q;;

(5) If J is an ideal of T satisfying J € P and J £ Q; for all i € {1,2, ...}, then the
map A — T/J is onto and JNA ¢ Q for all Q € C.

Proof. Let G=CU({P} and Q={u+J €T/J|J is an ideal of T with J € Q
for all Q € G}. Since T is infinite and Noetherian, |{J is an ideal of T with J ¢
Q for all Q € G}| < |T|. Also, if J is an ideal of T, then |T/J| < |T|. It follows that
|Q] < |T|. Well order Q so that each element has fewer than |Q| predecessors. Let 0
denote the first element of (). Apply Lemma 2.7 to find a PC-subring R; with R C R|,
such that for each i, p,T N R, = p;R;, and |R;| = |R|. Next apply Lemma 2.19 with
J = M to find a PC-subring R, with R, € R, such that IT N R, = I for every finitely
generated ideal I of R, and |R,| = |R;| = |R|.

Starting with R, recursively define a family of PC-subrings as follows. Let
o € (), and assume that Ry has already been defined to be a PC-subring for all § < «
with IT N R, = IR, for every finitely generated ideal I of R; and |Ry| = sup;_s{|{w €
Q| < B}, |Rs]}. Then y(a) = u+ J for some ideal J of T with J ¢ Q for every
Q€G. If y(a) < o, use Lemma 2.19 to obtain a PC-subring R, with |R,| = |R,,|
such that R,,) € R, C T, u + J is in the image of the map R, — T/J and ITNR,=1
for every finitely generated ideal I of R,. Moreover, this gives us that R, N J £ Q for
every Q € Cif u € J. Also, since |R,| = |R,(,)|, and we have that |R,| = sup,_,{[{w €
Qfw < al], R}

If y(¢) =a, define R, =Js_, R;. Then by Lemma 2.3, we see that R,
is a PC-subring of T. Moreover, |R,| = sup;_,{|{w € Q|w < a}|, |Rs|}. Now let

I=(,...,y,) be a finitely generated ideal of R,, and let ¢ € ITNR,. Then
{c,y15 .-} S Ry for some f < a. By the inductive hypothesis, (y;,..., )T N
Ry= (¥ s Y)Rg As c € (yy, ..., »)T N Ry, we have that ¢ € (y;,...,y)R; S I.

Hence ITNR, = 1.

We now know by induction that for each o€ Q, R, is a PC-subring
with |R,| = sup,_,{|[{w € Q| w < a}|, |R;|} and IT N R, = I for all finitely generated
ideals I of R,. We claim that A = |, R, is the desired domain.

First note that by construction, condition (5) of the lemma is satisfied. We
now show that the completion of A is 7. Note that as Q is nonmaximal in T for all
0 € G, we have that M> ¢ Q for all Q € G. Thus, by the construction, the map A —
T/M? is onto. Furthermore, by an argument identical to the one used to show that
IT N R, =1 for all finitely generated ideals I of R, in the case y(x) = o, we know
I'T N A =1 for all finitely generated ideals /" of A. It follows from Proposition 2.8
that A is Noetherian and A = T. Since the completion of A is a UFD, A must also
be a UFD.

Since each R, is a PC-subring, we have that AN P = (0). If J is a prime ideal
of T with J € P and J £ Q, for all i, then by condition (5) ANJ & Q,. It follows
that AN J # (0). So, (3) holds for the lemma.

Now we show that the formal fiber of p;A is local with maximal ideal Q,.
Since each R, is a PC-subring, by the argument in Lemma 2.3, we know that
((Q;\p;T)A) N A = {0} for all i and so in particular (Q,\p;,T7) N A = ¢ for all i. Thus
0,NA=pTNA=pA for each i, and so p;A is a prime ideal of A, and Q, is
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in its formal fiber. Let J be a prime ideal of T with J £ Q,. We shall show that
JNA#pA. If JC P, then JNA=(0). If J C Q, for some j#i, then JNA =
p;A # p;A. So suppose J Z Q for all Q € G. Then by condition (5), JNA Z Q,.
It follows that J N A # p,A. Hence the formal fiber of p;A is local with maximal
ideal Q,. O

Note that the only reason we need to assume 7 is a UFD is to invoke
Theorem 2.13. Using Theorem 2.18 in place of Theorem 2.13, we have the following
theorem, which is a generalization of Theorem 2.13 in [2].

Theorem 2.21. Let (T, M), C, P, and {p,} be as in Definition 2.1 with the extra
condition that for each i if Q € Ass(T/p;T), we have Q C Q.. Suppose further that C is
a finite set and |T| = |T/M|. Suppose that a PC-subring of T, (R, RN M), exists. Then
there exists a local domain A C T such that:

(1) p; € A for all i

2) A=T,
(3) ANP =(0), and if J is a prime ideal of T with JN A = (0), then J € P or J C Q,
for some i,

(4) For each i, p;A is a prime ideal in A and has a local formal fiber with maximal
ideal Q;;

(5) If J is an ideal of T satisfying J € P and J £ Q; for all i € {1,2, ...}, then the
map A — T/J is onto and JNA € Q for all Q € C.

Proof. Proceed in the same manner as the proof of Theorem 2.20 using
Theorem 2.18 in place of Theorem 2.13. Note that by Remark 2.12, the set G used
in the proof of Theorem 2.20 works even if T is not an integral domain. |

In light of Theorems 2.20 and 2.21, it is important to show that, for many
complete local rings, a PC-subring indeed does exist. The next two lemmas are
dedicated to showing that PC-subrings exist in certain cases.

Lemma 2.22. Let (T, M) be a complete local ring such that |T/M| = |T|, and let P
be a nonmaximal prime ideal of T. Let {q,, ¢, - ..} be a (nonempty) countable or finite
set of nonzero prime elements of T. For each q,, let Q; be a nonmaximal prime ideal of
T satisfying the property that q; € Q, if and only if i = j. Suppose also that P N 11= (0),
ONII=(0) forall Q € AssT, and for all i, Q; N I1 = (0) where 11 is the prime subring
of T. Then there exists a PC-subring of T with respect to a set {p,, p,, ...}, where
C={0,,0,,...} and p; is an associate of q; for every i.

Proof. Let Ry = Il ;). Then it is easy to see R, satisfies all conditions for being a
PC-subring with respect to the set {q,, ¢,, . . . } except the conditions that R, be infinite
and ¢; € R, for every i. Let n > 0 and assume inductively that for i < n the rings R,
and elements p; € T have been constructed so that the following conditions hold:

(1) (R;, R, M) is a subring of T;

(2) R; is (infinitely) countable for i > 0;
(3) p; is an associate of ¢;;

(4) p; e R, for j <i;
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(5) (Q;\p;,T)R, N R; = {0} for j < i
(6) R, NP =(0) and if P’ is an associated prime ideal of T, then R, N P’ = (0);
(7) RN Q; = (0) for j > i.

We now work to define the ring R, and the element p,. Use Lemma 4 from [7] to
find a unit ¢, satisfying ¢,¢, + Q is transcendental over R,_,/(ONR,_,;) for all Q €
{PLU{(0)} UAssTUC\{Q,}. Let p, = q,t,, S = R,_,[p,] and R, = S5qy,- We claim
that R, and p, satisfy the above conditions (1)-(7) with i replaced by n. We will show
that (Q,\p,T)R, N R, = {0} and leave the rest of the conditions to the reader.

We first show Q, "R, = p,R,. Let fe€ Q,NR, ,[p,]. Then f =r(p,)*+
-+ nrp,+r where r, € R,_;. So we have that f —r, € p,T € Q,. Hence, r, €
0,NR,_; =(0). It follows that f € p,R,_,[p,]. From this, we get that R, N Q, =
p,R, as desired.

Now suppose f € (Q,\p,T)R,NR, and f # 0. Then f = gs, where g € Q,,
g ¢ p,T and s € R,. We can write f = p'f and s = p‘s’, where f’,s € R, and
f'.s' & p,T. So we have p' f' = gp*s'. Now if k > ¢, we have f' € O, "R, = p,R,,
a contradiction. So, k < ¢. It follows that ¢gs" € p,T. As p,T is prime and ¢ ¢ p,7,
we have that s € p,T, a contradiction. So we have that (Q,\p,T)R, " R, = {0}.

Now, letting S = [, R, if C is infinite, and S = J._, R; if C contains k < oo
elements, it is not hard to show that S is the desired PC-subring of 7. O

Lemma 2.23. Let (T, M), C, P, and {p;} be as in Definition 2.1. Let R, be the
prime subring of T and R; = Ry[p,, p». ..., p;] for i=1,2,.... Define S =2, R,
if C is infinite, and S = Uf:o R; if C contains k < oo elements. Suppose S NP = (0),
SN P =(0), whenever P’ is an associated prime ideal of T and for each i, (Q;\p;,T)S N
S = {0}. Then there exists a PC-subring of T with respect to the set {p,, p,, ...}

Proof. 1If C is infinite, we use Lemma 2.2 to see that S, is a PC-subring of T.
On the other hand, suppose C contains k < oo elements. Then S may be finite.
Let G=AssT U{P}U{(0)} UC. For each Q € G, let D, be a full set of coset
representatives of the cosets ¢+ Q that are algebraic over R/(RN Q). Let D =
Ugec Q- and note that |D| < [T/M|. Now use Lemma 2.9 with I = M to find an
x €M such that x ¢ U{r + Q|r € D, Q € G}. Let §' = S[x] and S = S(y,,,. Then
S” is a PC-subring of T with respect to the set {p,, p,, ..., p;}. As the proof of this is
similar to other proofs in this article, we leave the details of the proof to the reader.

O

Theorem 2.24 is our main result.

Theorem 2.24. Let (T, M), C, P, and {p;} be as in Definition 2.1 such that the
following extra conditions also hold:

(1) For each i if Q € Ass(T/p,T), we have Q < Q;;

(2) T is a UFD;

(3) T =1T/M|;

(4) T contains the rationals;

(5) A PC-subring (R, RN M) exists;

(6) Tp is a regular local ring and for all i, T, and (T/p;T),. are regular local rings.
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Then there exists an excellent local UFD A C T such that:

(1) p; € A for all i

(2 A=T;
(3) ANP =(0), and if J is a prime ideal of T with J N A = (0), then J € P or J C Q,
for some 1,

(4) For each i, p;A is a prime ideal in A and has a local formal fiber with maximal
ideal Q,.

Proof. The proof is based on the proof of Lemma 3.16 in [3]. First use
Theorem 2.20 to construct the ring A. Then all conclusions are clear except that
A is excellent. Since T is a domain, A is formally equidimensional. It follows that
A is universally catenary. So we must only show that the formal fibers of A are
geometrically regular.

Let Q be a nonzero prime ideal of A with Q # p;A for all i. Since P N A = (0),
we have that QT ¢ P. Suppose QT C Q, for some i. Then Q = QT NAC Q,NA =
p;A, a contradiction. By the construction of A, it follows that the map A — 7T/QT
is onto and so A/Q = T/QT. Now, let k(Q) = A,/QA,. Then

T ®,k(Q) = (T/0T)i=5 = (A/Q)ig = Ap/QA, = k(Q),
a field. Also note that if L is a finite field extension of k(Q) then we have that
T L=T Q4 k(Q) Qg L =k(Q) Qg L=L,

also a field. It follows that the fiber over Q is geometrically regular.

We now show that the fiber over the zero ideal of A is geometrically regular.
By the way we constructed A, if Q is a prime ideal of T with Q N A = (0), then
Q C Por QCQ, for some i. Now T ®, k((0)) localized at Q is isomorphic to T,.
Since T, and T, are assumed to be regular local rings and Q € P or Q C Q; for
some i, we have that T, is a regular local ring. Since T contains the rationals, k((0))
is a field of characterlstlc zero. It follows that the fiber over the zero ideal of A is
geometrically regular.

It is left to show that the fibers over p;A are geometrically regular. By the way
we constructed A, we have that T ®, k(p,A) is a local ring with maximal ideal Q,.
Now, T ®, k(p;A) is isomorphic to ( 7)a=pA> and so we have that the ring 7 ®,
k(p;A) localized at Q; is 1som0rph1c to ( T)Q which is a regular local ring by
assumption. Since T contains the rauonals k(p,A) is a field of characteristic zero,
and it follows that the formal fiber of p;A is geometrically regular. Therefore, A is
excellent. O

By the proof of Theorem 2.24, we know exactly what the formal fibers of A
are. Specifically, the formal fiber of A at p,A is the set of prime ideals of T that are
contained in Q,; and that contain p;. The formal fiber of A at (0) is {P} union the
set of prime ideals of T that are contained in Q, for some i, but do not contain p;.
Now, suppose that Q is a nonzero prime ideal of A with Q # p,;A for every i. Then
we have by the above proof that the formal fiber ring of A at Q, namely, T ®, k(Q),
is a field. So, there is only one element in the formal fiber of A at Q. In fact, we
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know that QT N A = Q and since A/Q = T/QT, we have that QT is a prime ideal
of T. So the only element in the formal fiber of A at Q is, therefore, OT.

In light of Theorem 2.18, we have the following theorem for the case when C
is finite.

Theorem 2.25. Let (T,M), C, P, and {p;} be as in Definition 2.1 such that the
following extra conditions also hold:

(1) For each i if Q € Ass(T/p,T), we have Q € Q;;

(2) C is a finite set;

3) IT] = 1T/M|;

(4) T contains the rationals;

(5) A PC-subring (R, RN M) exists;

(6) Tp is a regular local ring and for all i, Ty, and (T/p;T),, are regular local rings.

Then there exists an excellent local domain A C T such that:

(1) p; € A for all i;

2) A=T,;
(3) ANP =(0) and if J is a prime ideal of T with J N A = (0), then J C P or J C Q,
for some i,

(4) For each i, p;A is a prime ideal in A and has a local formal fiber with maximal
ideal Q,.

Proof. Proceed as in the proof of Theorem 2.24 using Theorem 2.21 in place of
Theorem 2.20. O

We end with an example showing that there is a complete local ring T
satisfying the hypotheses of Theorem 2.24.

Example 2.26. Let T = C[[x, x;,...,x,]] with n > 3. Define P = (x3,...,x,)
and for i=1,2,..., define ¢, = x; —ix, and Q; = (x; — ixy, X3, ..., x,). Then by
Lemma 2.22, there exists a PC-subring of T with respect to a set {p,, p,, ...}, where
p; 1s an associate of ¢, for every i. It follows from Theorem 2.24 that there exists an
excellent local UFD A such that a(A) = a(A/p;A) = n — 2 for all i.
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