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Abstract
Suppose that M is a finitely-generated graded module (generated in degree 0) of codimen-
sion c ≥ 3 over a polynomial ring and that the regularity of M is at most 2a − 2 where 
a ≥ 2 is the minimal degree of a first syzygy of M. Then we show that the sum of the 
betti numbers of M is at least �

0
(M)(2c + 2

c−1) . Additionally, under the same hypothesis 
on the regularity, we establish the surprising fact that if c ≥ 9 then the first half of the betti 
numbers are each at least twice the bound predicted by the Buchsbaum-Eisenbud-Horrocks 
rank conjecture: for 1 ≤ i ≤

c+1

2
 , �

i
(M) ≥ 2�

0
(M)

(

c

i

)

.

Keywords  Betti number · Boij–Söderberg Theory · Buchsbaum-Eisenbud-Horrocks rank 
conjecture · Total rank conjecture

1  Introduction

Let S = k[x1,… , xn] be a polynomial ring over a field k and let M be a finitely generated 
graded S-module of finite length. The total betti number �(M) ∶= �0(M) +⋯ + �n(M) is 
defined to be the sum of the betti numbers of M. This number has been of recent interest, 
most notably in the context of the Total Rank Conjecture which predicts that �(M) ≥ 2n . 
If char(k) ≠ 2 , this conjecture was recently proved by Walker [8], who also showed that 
equality holds if and only if M is isomorphic to S modulo a regular sequence—such mod-
ules are called complete intersections.

Evidently if M is not a complete intersection, then 𝛽(M) > 2n and since �(M) must 
be even, it follows that �(M) ≥ 2n + 2 . In fact, there is reason to believe that if M is not 
a complete intersection then �(M) must be considerably larger than 2n . It was asked by 
Charalambous, Evans, and Miller in [3] whether it is true that �(M) ≥ 2n + 2n−1 . They 
proved that this is the case for arbitrary graded modules M when n ≤ 4 and for all n when 
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M is multi-graded. We remark that if M is not of finite length, then the natural extension is 
to claim that

Such an extension has recently been obtained for monomial ideals in [2] where it was also 
proved that equality is possible for all c ≥ 2 . The impetus of this paper was to prove that 
(1.1) holds for arbitrary M provided that the regularity of M is small relative to the degrees 
of its first syzygies. This is the content of our first theorem.

Theorem 1.1  Let M be a graded S-module of codimension c ≥ 3 generated in degree 0 and 
let a ≥ 2 be the minimal degree of a first syzygy of M. If reg (M) ≤ 2a − 2 , then

Our result is an extension of work by Erman [5], where he proved, under the same 
hypothesis on the regularity, that �i(M) ≥ �0(M)

(

c

i

)

 . Erman’s work proves a special case of 
the Buchsbaum-Eisenbud-Horrocks rank conjecture which predicts that �i(M) ≥

(

c

i

)

 . Natu-
rally, Erman’s bound will imply that �(M) ≥ �0(M)2c when the regularity hypothesis holds. 
Noting that 2c + 2c−1 = (1.5)(2c) , the stronger bound in Theorem 1.1 asserts that on aver-
age, each betti number �i(M) is at least 1.5 times �0(M)

(

c

i

)

.
We view the most interesting aspect of our paper to be the discovery uncovered by our proof 

of Theorem 1.1 which sheds new light on the relative size of betti numbers of modules with 
low regularity. As a first approach to Theorem 1.1, we considered whether it might be pos-
sible to show that each betti number satisfies �i(M) ≥ 1.5�0(M)

(

c

i

)

 . It is easy to see that such 
a result cannot hold—for instance any Gorenstein algebra S/I will have �0(S∕I) = �c(S∕I) = 1 . 
More generally, it is not hard to find examples where 𝛽i(M) < 1.5𝛽0(M)

(

c

i

)

 for several values 
of i. However, quite surprisingly for us, we could find no examples where this occurred for 
1 ≤ i ≤ ⌈

c

2
⌉ (provided that c ≥ 9 ). In fact, we are able to prove that the first half of the betti 

numbers are not only at least 1.5 times Erman’s bound, but they are at least double!

Theorem 1.2  Let M be a graded S-module of codimension c ≥ 9 generated in degree 0 and 
let a ≥ 2 be the minimal degree of a first syzygy of M. If reg (M) ≤ 2a − 2 then for each 
1 ≤ i ≤ ⌈c∕2⌉ , �i(M) ≥ 2�0(M)

(

c

i

)

.

We consider Theorem  1.2 to be our main contribution. Indeed, since this says the 
first half of the betti numbers are at least twice the Horrocks bound, it easily follows 
that on average the betti numbers are large enough to ensure that their sum is at least 
�0(M)(2c + 2c−1) . Thus the first theorem follows from the second after an analysis of a 
small number of cases where 3 ≤ c ≤ 8 ; this is done in Sect. 3.

Theorem 1.2 also implies a rather strong connection between the regularity of M and 
its first few betti numbers. For instance, this means that if M = S∕I where I is of codimen-
sion at least 9 and is minimally generated by c ≤ 𝜇 < 2c quadrics, then the reg (M) ≥ 3 . 
In the Artinian (finite-length) case, since the regularity can be interpreted as the maximal 
socle degree, we can understand this result as making more precise the idea that having a 
small number of generators will naturally lead to a high socle degree. Our theorem pro-
vides bounds on this relationship which are new (even in the Artinian case).

It seems to us rather bizarre that this theorem (like Erman’s results) should depend 
almost completely on the numerics coming from Boij–Söderberg Theory. This mysterious 

(1.1)�(M) ≥ 2c + 2c−1 where c is the codimension of M.

�(M) ≥ �0(M)(2c + 2c−1).
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behavior is also apparent in McCullough’s work in [7] concerning the relationship between 
the regularity of an ideal and the degrees of half of its syzygies. In this vein, our results can 
be interpreted as saying that the degree of the first syzygy and the number of syzygies in 
the first half of the resolution can in some cases force the regularity to be large.

We remark that the regularity bound is actually relaxed enough to include many inter-
esting geometric examples. In [5], Erman presents several examples of modules that sat-
isfy reg (M) ≤ 2a − 2 including smooth curves embedded by linear systems of high degree, 
toric surfaces, and Artinian rings M = S∕I whose socle degree is relatively low.

We comment now on our methods and how they differ from those of Erman. We begin 
as he did with standard Boij–Söderberg techniques to write an arbitrary betti diagram as a 
rational combination of normalized pure betti diagrams, whose entries �i(D) are each a func-
tion of n positive integers D = (d1,… , dn) . In Sects. 2 and 3 we show that the proofs of our 
main theorems reduce to finding lower bounds for �i(D) ; we need to show that �i(D) ≥ 2

(

n

i

)

 
whenever i ≤ ⌈

n

2
⌉ . It’s then natural to consider the ratio and attempt to show �i(D)∕

(

n

i

)

≥ 2 . 
Like Erman we reduce these calculations to the study of a function F(a, b, e, n, i) of 5 varia-
bles by proving �i(D)∕

(

n

i

)

≥ F(a, b, e, n, i) . The parameters a, b, e of F depend on the degree 
sequence in question. It is here that our analysis differs substantially from that of Erman.

Since Erman was concerned with a uniform bound for all betti numbers, his proof (in our 
notation) shows that F(a, b, e, n, i) ≥ 1 . Our task, on the other hand, is to focus on the first half 
of the betti numbers and prove that F(a, b, e, n, i) ≥ 2 for small i. Since this statement is not 
true for all i (nor is it true if the codimension n is less than 9) our analysis necessarily proceeds 
in a delicate way. In addition, if n ≤ 8 , since Theorem 1.1 holds whereas Theorem 1.2 does 
not, independent techniques are developed to address these cases. What ultimately makes the 
proofs difficult is simply that the function F is complicated, so finding its minimum requires 
some care. Moreover, there are a host of cases where our general method fails—these arise 
primarily when the difference between the regularity of M and the generating degree of a first 
syzygy of M is very small. The reduction via Boij–Söderberg theory necessitates that we con-
sider all of these cases, as otherwise our results would be significantly weaker.

2 � Boij–Söderberg basics

In this section we will review the relevant pieces of Boij–Söderberg theory. Rather than 
state the theory in its fullest generality, we present only the version we need for our results. 
We begin with an example.

Example 2.1  Let S = ℚ[x, y, z] and take I to be an ideal generated by 5 general quadrics. 
Set M = S∕I . Similarly, let � be a 3 × 10 matrix of general quadrics and let N = Coker� . 
Finally, let M� = S∕(x2, y2, z2, xy) . The betti diagrams of M, N and M′ are given below:

We point out that the first two diagrams are pure in the sense that each column has at 
most one nonzero entry. The last betti diagram is not pure since the column represent-
ing the second syzygy module has two nonzero entries. Further, note that each of the first 

�(M)

1 − − − − − −

− − 5 5 − −

− − − − − − 1

,

�(N)

3 − − − − − −

− − 10 − − − −

− − − − 15 8

,

�(M�)

1 − − − − − −

− − 4 2 − −

− − − − 3 2
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two diagrams is a sub-diagram of the third diagram, in the sense that the locations of the 
nonzero entries of the first two fit inside the third diagram. This will be made explicit in 
what follows.

Finally, we notice the rather astonishing fact that the third betti diagram (thought of as 
a matrix) can be written as a positive rational linear combination of the first two diagrams:

The above example is an instance of the following, which is a summary of the main results 
in Boij–Söderberg Theory.

“The betti diagram of an (arbitrary) finite-length module can be written as a positive 
rational linear combination of pure diagrams.”

We now set S = k[x1,… , xn] and work with finitely generated graded S-modules M. 
Henceforth all of our modules will be assumed to be generated in degree 0; allowing for 
shifting, this is tantamount to saying that M is generated in a single degree. If M is a finite 
length module and each syzygy module of M is generated in a single degree then we will 
say that M has a pure resolution (or that M is pure). Note that we require that pure mod-
ules have finite length. For a pure module M we let D ∶ (d0 = 0) < d1 < ⋯ < dn be the 
sequence whose i-th entry is the degree of the generators of the i-th syzygy module of M. 
This increasing sequence of integers D is called the degree sequence of  M . By reg (D) we 
will mean the number dn − n , which corresponds to the regularity of the module M.

Remark 2.2  A finite length module M is pure with degree sequence 
D ∶ (d0 = 0) < d1 < ⋯ < dn if and only if for each i = 0,… , n , the graded betti numbers 
of M satisfy

Remarkably, the betti numbers of pure modules are determined up to scalar multiple. 
Indeed, if a finite length module M is pure with degree sequence D then there is a scalar 
� ∈ ℚ so that for all i, the following holds:

This was first proven by Herzog and Kühl [6] and the equalities above are called the Her-
zog-Kühl equations. Note that since �0(D) = 1 we have that � = �0(M) . In order to prove 
Theorems 1.1 and 1.2 we will study the rational functions �i and establish the following 
two theorems.

Theorem 2.3  Suppose that n ≥ 3 and D ∶ 0 < d1 < … < dn is a degree sequence of length 
n + 1 with d1 ≥ 2 satisfying reg (D) ≤ 2d1 − 2 . Then 

∑

�i(D) ≥ 2n + 2n−1.

Theorem 2.4  Let D be a degree sequence of length n + 1 with d1 ≥ 2 and reg (D) ≤ 2d1 − 2.

•	 If n ≥ 9 , then for each 1 ≤ i ≤ ⌈n∕2⌉ , 

�(M�) =
2

5
�(M) +

1

5
�(N).

�ij(M) ≠ 0 ⟺ j = di.

(2.1)�i(M) = �i,di (M) = ��i(D) with �i(D) =
d1 ⋯ dn

∏

i≠j(di − dj)
.
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•	 If n ∈ {6, 7, 8} , the same conclusion holds unless

◦ d1 = 2 and reg (D) = 2 or
◦ d1 = 3 and reg (D) = 3.

Remark 2.5  When n ∈ {6, 7, 8} there are only 36 degree sequences satisfying the regularity 
hypothesis but to which Theorem  2.4 does not apply. The pure diagrams are those that are 
subdiagrams of one of the following diagrams:

The content of Theorems 2.3 and 2.4 is purely numerical. Their connection to our main 
theorems on betti numbers is achieved via the beautiful results of Boij–Söderberg Theory, 
developed in [1, 4]. This theory shows that the betti diagram of an arbitrary finite length 
module can be written as a finite rational linear combination of pure diagrams.

Given a module M, its graded betti numbers �ij(M) are often arranged into a betti-dia-
gram—thought of as a matrix (typically with the convention that �i,i+j(M) is in the ith col-
umn and the jth row). With this convention the regularity of M is equal to the index of the 
bottom row in the diagram. If D is a degree sequence of length n + 1 then we define B(D) 
to be the betti diagram with entry �i(D) in column i and row di − i . By the Herzog-Kühl 
equations (2.1), if M is a pure module with degree sequence D then the betti diagram of M 
will be a scalar multiple of B(D).

Example 2.6  We associate to the degree sequence D = {0, 2, 4, 5} the following diagrams:

We use stars to emphasize that we care about the positions of the nonzero entries in the 
diagram, then use B(D) to denote the diagram of numbers �i(D).

Given two diagrams B and B′ we say that B′ is a sub-diagram of B if for each nonzero 
entry of B′ , the corresponding entry in B is also nonzero. If B is the betti diagram of a 
finitely generated module then there are a finite number of degree sequences D such that 
B(D) is a subdiagram of B. We now summarize the results of Eisenbud-Schreyer and 
(respectively) Boij–Söderberg [1, 4] which show that a finite length module (respectively, 
one of codimension c) can be decomposed as a sum of pure diagrams.

Theorem 2.7  (Main Theorem of Boij–Söderberg Theory [1, 4]). Let M be a finitely gener-
ated S-module with betti diagram B. Suppose that codimM = c . If Ω = {B(D)} is the set 
of all pure sub-diagrams of B having between c + 1 and n + 1 columns (indexed by their 

�i(D) ≥ 2
(

n

i

)

.

0 1 2 3 n

0 ⋆ − − − − − − − − − − − − − − − −

1 − − ⋆ ⋆ ⋆ ⋯ ⋯ ⋆ ⋆ −

2 − − − − ⋆ ⋆ ⋯ ⋯ ⋆ ⋆ ⋆

,

0 1 2 3 n

0 ⋆ − − − − − − − − − − − − − − − −

1 − − − − − − − − − − − − − − − − − −

2 − − ⋆ ⋆ ⋆ ⋯ ⋯ ⋆ ⋆ −

3 − − − − ⋆ ⋆ ⋯ ⋯ ⋆ ⋆ ⋆

.

⋆ − − −

− ⋆ − −

− − ⋆ ⋆

,

B(D)

1 − − −

−
10

3
− −

− − 5
8

3

.
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degree sequences D with lengths between c + 1 and n + 1 ) then there exist non-negative 
rational numbers �D such that

In particular, this implies that �0(M) =
∑

�D and more generally, �i(M) =
∑

�D�i(D).

3 � Reduction to Theorem 2.4

In this section we explain how to deduce our main theorems from their numerical versions 
stated in Sect. 2. We will then assume Theorem 2.4 and use it to prove Theorem 2.3. For 
convenience, all four theorems are restated in the diagram below. 

Main Theorems on Betti Numbers Main Numerical Results

Theorem 1.1. Let M be a graded S-module of codi-
mension c ≥ 3 generated in degree 0 and let a ≥ 2 
be the minimal degree of a first syzygy of M. If 
reg (M) ≤ 2a − 2 then �(M) ≥ �0(M)(2c + 2c−1).

Theorem 2.3. Suppose that n ≥ 3 , and D is a degree 
sequence of length n + 1 , and d1 ≥ 2 satisfying 
reg (D) ≤ 2d1 − 2 . Then 

∑

�
i
(D) ≥ 2n + 2n−1.

Theorem 1.2. Let M be a graded S-module of codi-
mension c ≥ 9 generated in degree 0 and let a ≥ 2 
be the minimal degree of a first syzygy of M. If 
reg (M) ≤ 2a − 2 then for each 1 ≤ i ≤ ⌈c∕2⌉ , 
�
i
(M) ≥ 2�0(M)

(

c

i

)

.

Theorem 2.4. If d1 ≥ 2 and reg (D) ≤ 2d1 − 2 
and n ≥ 9 then for each 1 ≤ i ≤ ⌈n∕2⌉

,   �
i
(D) ≥ 2

(

n

i

)

. If n ∈ {6, 7, 8} and either d1 ≥ 3 
or reg (D) − d1 + 1 ≠ 1 , then the same conclusion 
holds.

The theorems on the left follow more or less immediately from the corresponding theo-
rems on the right via Boij–Söderberg theory. With the exception of a small number of spe-
cial cases when n < 9 , Theorem 2.3 will follow from Theorem 2.4, the proof of which will 
be postponed until Sect. 4.

3.1 � Proofs of Theorems 1.1 and  1.2

Proof of Theorem  1.1  Suppose M is generated in degree zero, and a ≥ 2 is the minimal 
degree of a first syzygy of M. By Theorem 2.7 there exist nonnegative rational numbers aD 
such that

where D runs over all degree sequences of length �(D) ∈ [c + 1, n + 1] whose betti dia-
grams, B(D), are sub-diagrams of B(M). Let D be such a degree sequence. Then d1 ≥ a and 
as we have assumed regM ≤ 2a − 2 , it follows that

B =
∑

B(D)∈Ω

�DB(D).

(3.1)�i(M) =
∑

D

aD�i(D)

reg (D) = d
�(D) − �(D) ≤ regM ≤ 2a − 2 ≤ 2d1 − 2.
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Hence we can apply Theorem 2.3. Since every degree sequence appearing in the sum has 
length at least c + 1 , Theorem 2.3 implies that 

∑

i �i(D) ≥ 2c + 2c−1 . Hence we have

	�  ◻

Proof of Theorem 1.2  The scaffolding is exactly the same as in the previous proof. If c ≥ 9 
then Eq. (3.1) and Theorem  2.4 imply for i ∈ {1,… , ⌈c∕2⌉}

	�  ◻

3.2 � Proof of Theorem 2.3

Proof of Theorem 2.3 when Theorem 2.4 holds  Suppose that D is a degree sequence satisfy-
ing the hypotheses of Theorem 2.4. We recall that Erman proved that �i ≥

(

n

i

)

 for all i [5, 
Theorem 1.2]. Now let us add up all of the �i in pairs: �i + �n−i . If n is odd, there are an 
even number of pairs. Now �0 + �n ≥ 2 since �0 = 1 and �n ≥ 1 by Erman’s result. In all 
other pairs, we combine Theorem  2.4 with Erman’s result, and conclude that 
�i + �n−i ≥ 3

(

n

i

)

 . Moreover, since the assumption on indices in Theorem   2.4 includes 
i = ⌈n∕2⌉ , the last pair is at least 4

(

n

(n−1)∕2

)

 . Thus

When n is even, we proceed by pairing terms exactly as before. In this case however, there 
is a central term in the sum (the term �n∕2 ) which has no companion. We thus have:

	�  ◻

Proof of Theorem 2.3 for n ∈ {6, 7, 8}

By Remark  2.5 there are only 36 degree sequences D that satisfy d1 ≥ 2 and 
reg (D) ≤ 2d1 − 2 for which Theorem  2.4 does not apply. Using Macaulay2 we checked 
that the sum of �i(D) in each of these cases is at least 2n + 2n−1 . The reader is directed to 
the file computations.m2 included in our arXiv posting for explicit code that can be used to 
verify this statement. 	�  ◻

Proof of Theorem 2.3 for n ∈ {3, 4, 5}

For each value of n, we will verify that 
∑

�i ≥ 1.5 ⋅ 2n via a direct computa-
tion. Suppose first that n = 3 so that the degree sequence D = {0, d1, d2, d3} . We 
change notation to emphasize the nonlinear parts of D by instead writing it as 

�(M) =

n
∑

i=0

�i(M) =
∑

D

aD

(

n
∑

i=0

�i(D)

)

≥

∑

D

aD(2
c + 2c−1) = �0(M)(2c + 2c−1).

�i(M) =
∑

D

aD�i(D) ≥
∑

D

aD 2

(

c

i

)

= �0(M)

(

c

i

)

.

∑

�i ≥ 2 + 3

(

n

1

)

+⋯ + 3

(

n
n−1

2

)

+

(

n
n−1

2

)

≥ 2 +
3

2
(2n − 2) +

(

n
n−1

2

)

≥ 2n + 2n−1.

∑

�i ≥2 + 3

(

n

1

)

+⋯ 3

(

n
n−2

2

)

+ 2

(

n
n

2

)

≥ 2 +
3

2

(

2n − 2 −

(

n
n

2

)

)

+ 2

(

n
n

2

)

≥2n + 2n−1.



400	 A. Boocher, D. Wigglesworth 

1 3

D = {0, a, a + x + 1, a + x + y + 2} , where x, y ≥ 0 can easily be computed from the di’s. 
The Herzog-Kühl equations (2.1) are explicit formulae for the �i(D) ’s in terms of the di’s:

We may assume a ≥ 2 and our regularity assumption says x + y + 1 ≤ a . We want to prove 
that 

∑3

i=0
�i(D) ≥ 12 , which after clearing denominators is equivalent to:

If x = y = 0 so that the resolution is linear, then the assumption that a ≥ 2 implies the ine-
quality holds. On the other hand if the resolution is not linear, the left hand side is clearly 
an increasing function of a, so it suffices to consider the case that a = x + y + 1 , whereby 
the inequality becomes

Evidently, each of these terms is positive at least two are nonzero (since x and y are not 
both 0), so the inequality holds as desired.

Repeating an identical analysis with n = 4 (so that D = {0, a, a + x + 1, a + x + y + 2, a + x 
+y + z + 3} ) again results in a polynomial inequality for which the left hand side 
is an increasing function of a. After considering the linear case separately, we set 
a = x + y + z + 1 , and are left to verify the polynomial inequality

This will hold provided not all of x, y, z = 0.
The proof strategy for n = 5 is exactly the same and begins by setting 

D = {0, a, a + x + 1, a + x + y + 2, a + x + y + z + 3, a + x + y + z + w + 4} , then using 
the Herzog-Kühl equations to get a polynomial inequality. The expression thus obtained 
is now too complicated to be analyzed by hand, though it’s still very manageable for a 
machine. By writing it as a polynomial in a, one can verify that all of the coefficients 
(besides the constant term) are positive and therefore that left hand side is increasing as a 
function of a. Again substituting a = x + y + z + w + 1 , one obtains an expression and fac-
tors it (with a computer) to arrive at an inequality in which all terms on the left hand side 
are positive except for the constant term. A simple computer verification shows that the 
inequality holds for all x, y, z,w ≥ 0 . 	�  ◻

Remark 3.1  The file computations.m2 included in our arXiv posting contains code to ver-
ify the numerical statements in this paper. All statements that need computer verification 
occur in consideration of low codimension cases and have now been made.

�0(D) = 1, �1(D) =
(a + x + 1)(a + x + y + 2)

(x + 1)(x + y + 2)
,

�2(D) =
a(a + x + y + 2)

(x + 1)(y + 1)
, �3(D) =

a(a + x + 1)

(x + y + 2)(y + 1)
.

a2 + ax + ay + 2a − 5xy − 5x − 5y − 5 ≥ 0.

0 ≤ 2x2 + 2y2 − 2xy − 2 = (x − y)2 + x2 + y2 + xy − 2.

2x
4 + 5x

3
y + 4x

2
y
2 + xy

3 + 7x
3
z + 9x

2
yz + 4xy

2
z + 2y

3
z + 9x

2
z
2 + 8xyz

2

+ 5y
2
z
2 + 5xz

3 + 4yz
3 + z

4 + 12x
3 + 19x

2
y + 10xy

2 + 3y
3 + 27x

2
z + 15xyz

+ 12y
2
z + 23xz

2 + 17yz
2 + 8z

3 + 22x
2 + 13xy + 9y

2 + 23xz + 12yz + 17z
2 + 6x

+ 4z − 6 ≥ 0
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4 � Proof of Theorem 2.4

In this section we will prove Theorem 2.4, which is the last ingredient needed to complete 
the proofs of our main results. We endeavor to show that for suitable D and i, we have

Thus it is natural to study the function (D, i) ↦ �i(D)∕
(

n

i

)

 . Of course this function depends 
on n + 1 parameters, so a simplification is required before a reasonable analysis can be per-
formed. We will define a function F depending on five parameters such that

Main Notation: Let D ∶ 0 < d1 < ⋯ < dn and set a = d1 . Given i ≥ 1 , we define a modifi-
cation of D as follows:

We now consider a degree sequence Di , as in Eq. (4.1) above, and focus our attention on its 
nonlinear parts:

Notice then that we have

The reader may want to ignore these equations and press on to the example that follows, 
which should clarify the idea (and resolve the ambiguity when i = 1).

Example 4.1  Suppose that i = 5 and D = {0, 3, 5, 6, 8, 10 , 12, 15, 16, 19, 20} then the betti 
diagrams for D and D5 would be formatted as shown

Visually, we have kept di in the same place, but have shifted all of the earlier numbers to 
the top of the diagram and all of the later ones to the bottom. Notice that in this example 
a = 3 . In the right-hand diagram there are visible jumps of size b = 3 and e = 5 on either 
side of the ⋆  in position i.

�i(D) ≥ 2
(

n

i

)

.

�i(D)
(

n

i

) ≥ F(a, b, e, n, i).

(4.1)
Di = {0, a, a + 1, a + 2,… , a + (i − 2), di, dn − (n − i − 1), dn − (n − i − 2),… dn}.

b ∶= di − a − i + 1, e ∶= dn − di − n + i.

dn = a + b + e + n − 1, and reg (D) = a + b + e − 1.

D

⋆ − − − − − − − − − −

− − − − − − − − − −

⋆ − − − − − − − − −

− ⋆ ⋆ − − − − − − −

− − − ⋆ − − − − − −

− − − − ⋆ − − − − −

− − − − − ⋆ − − − −

− − − − − − − − − −

− − − − − − ⋆ ⋆ − −

− − − − − − − − − −

− − − − − − − − ⋆ ⋆

,

D5

⋆ − − − − − − − − − −

− − − − − − − − − −

⋆ ⋆ ⋆ ⋆ − − − − − −

− − − − − − − − − −

− − − − − − − − − −

− − − − ⋆ − − − − −

− − − − − − − − − −

− − − − − − − − − −

− − − − − − − − − −

− − − − − − − − − −

− − − − − ⋆ ⋆ ⋆ ⋆ ⋆
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Lemma 4.2  If D ∶ 0 < (d1 = a) < d2 < ⋯ < dn is a degree sequence then for all i ≥ 1

Proof  We prove a slightly more general statement. Let i ≥ 1 and suppose that 
D� = {0, d�

1
,… , d�

n
} is a degree sequence with d�

i
= di . Then

As all the terms in the product are positive, a sufficient condition for �i(D) ≥ �i(D
�) is that

for all j ≠ i . If j < i then this is equivalent to requiring

Conversely, if j > i then the inequality is dj ≤ d′
j
 . To conclude, we simply observe that all 

of these inequalities hold for D� = Di , whence the result follows. 	�  ◻

We now compute

Definition 4.3  We define the function F = F(a, b, e, n, i) as the coefficient of 
(

n

i

)

 in the 
above computation. The domain of F is b ≥ 0 , e ≥ 0 , a ≥ 2 , n ≥ 3 , 1 ≤ i ≤ n,

In the sequel we will refer to each of the three fractions in the above equation as a group-
ing. When i = 1 there are no terms in the first grouping. Similarly, when e = 0 the third 
grouping is empty.

Our present goal is to show that F(a, b, e, n, i) is at least 2 for a suitable range of inputs 
(e.g. i ≤ ⌈n∕2⌉ ). At this point we direct the reader to this video https​://tinyu​rl.com/Large​Lower​
Bound​s, which explains how our analysis of the function F will proceed below. While the 
remainder of the paper is technical, the underlying idea is rather simple and is easily conveyed 

�i(D) ≥ �i(D
i).

�i(D) =
∏

j≠i

dj

|dj − di|
, �i(D

�) =
∏

j≠i

d�
j

|d�
j
− di|

.

dj

|dj − di|
≥

d�
j

|d�
j
− di|

dj

di − dj
≥

d�
j

di − d�
j

⟺ dj ≥ d�
j
.

�
i
(Di) =

a(a + 1)⋯ (a + (i − 2))

(b + 1)(b + 2)⋯ (b + (i − 1))

(a + b + e + i)⋯ (a + b + e + n − 1)

(e + 1)(e + 2)⋯ (e + n − i)

i!(n − i)!

n!

(

n

i

)

=
a(a + 1)⋯ (a + (i − 2))

(b + 1)(b + 2)⋯ (b + (i − 1))

(n + a + b + e − 1)!e!

(a + b + e + i − 1)!(n − i + e)!

i!(n − i)!

n!

(

n

i

)

=
(a)⋯ (a + (i − 2))

(b + 1)⋯ (b + (i − 1))

(n + 1)⋯ (n + a + b + e − 1)

(i + 1)⋯ (i + a + b + e − 1)

e!

(n − i + 1)⋯ (n − i + e)

(

n

i

)

.

F(a, b, e, n, i) =
(a)⋯ (a + (i − 2))

(b + 1)⋯ (b + (i − 1))

(n + 1)⋯ (n + a + b + e − 1)

(i + 1)⋯ (i + a + b + e − 1)

e!

(n − i + 1)⋯ ((n − i) + e)
.

https://tinyurl.com/LargeLowerBounds
https://tinyurl.com/LargeLowerBounds
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in the linked video. The proof of Theorem 2.4 includes a flowchart (Fig. 2) that explains how 
the lemmas and computations that follow fit together.

Lemma 4.4  F is increasing as a function of a:

Proof  If i = 1 , then F(a + 1, b, e, n, i) is equal to F(a, b, e, n, i) times an additional factor 
which has the form (s + n + a)∕(s + i + a) for some s ∈ ℕ , which is evidently at least 1. If 
i > 1 , then in addition to this extra factor, the numerators of the terms in the first grouping 
in F(a + 1, b, e, n, i) will be larger than the corresponding terms of F(a, b, e, n, i). 	�  ◻

One might hope that F is an increasing function of n. This is not the case as evi-
denced by Fig. 1 which shows the graph of y = F(2, 0, 1, n, 20) . Notice however, that for 
large enough n, the function F is increasing. This is no coincidence, as the following 
lemma shows.

Lemma 4.5  If n ≥ 2i − 1 and reg (D) ≤ 2a − 2 then

That is, if i is at most n+1
2

 then F is an increasing function of n.

Proof  Let R = reg (D) = a + b + e − 1 . Using our assumption on the regularity, we have

This in turn implies

F(a, b, e, n, i) ≤ F(a + 1, b, e, n, i).

F(a, b, e, n, i) ≤ F(a, b, e, n + 1, i).

2a − 2 ≥ a + b + e − 1 ⟹ a − 1 ≥ b + e.

Fig. 1   A graph of F(2, 0, 1, n, 20) as a function of n 
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Further if n ≥ 2i − 1 then

Finally we compute

This will be at least 1 provided

which is equivalent to:

R = b + e + a − 1 ≥ 2(b + e) ≥ 2e.

n ≥(2i − 1)
R − e

R − e
=

2iR − R − 2ie + e

R − e
=

(i − 1)R + e + i(R − 2e)

R − e

≥
(i − 1)R + e

R − e
.

F(a, b, e, n + 1, i)

F(a, b, e, n, i)
=

(n + a + b + e)(n − i + 1)

(n + 1)((n − i) + e + 1)
.

(n + a + b + e)(n − i + 1) ≥ (n + 1)((n − i) + e + 1)

Fig. 2   The proof when n ≥ 9 . The red expression in each box is the current lower bound for F(a, b, e, n, i); 
the black question tells one how to proceed. Arrows are decorated with the possible answers to the ques-
tions (in black) and the lemma or computation used (in green) to obtain the new lower bound (i.e. arrows 
can be read as ≥ symbols). The two blue arrows highlight the places where our argument differs for 
n ∈ {6, 7, 8}
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This is the inequality we have shown above. 	�  ◻

Remark 4.6  Notice that Fig. 1 shows that we cannot improve the bound n ≥ 2i − 1 . Further, 
note that in this proof we used that reg (D) ≥ 2e and that this came from our assumption 
that reg (D) ≤ 2a − 2 . If we relax that bound, even by one, say to 2a − 1 then it will not be 
true that F is an increasing function of n. For instance, consider the following two degree 
sequences (with a = 2, b = 0, e = 2, i = 3,R = 3):

We have just seen (Lemmas  4.4 and  4.5) two crucial observations about the func-
tion F. Using these, a few elementary computations allows us to establish Theorem 2.4 
for the vast majority of degree sequences of pure diagrams. However, to obtain the full 
strength of Theorem 1.1, our reduction via Boij–Söderberg theory necessitates that we 
consider all degree sequences of pure sub-diagrams of the betti diagram of M and many 
of these degree sequences are not covered by the lemmas above. Thus the analysis that 
follows requires a careful analysis of the function F.

We begin by addressing the case of linear resolutions. These correspond to the case 
when b = e = 0 and are handled by the following lemma.

Lemma 4.7  If b = e = 0 , then F(a, 0, 0, n, i) ≥ 2.

Proof  If i ≥ 2 , then

On the other hand, if i = 1 there are no terms in the first grouping. Since a ≥ 2 and n ≥ 3 , 
there is at least one term in the middle grouping and we have

	�  ◻

Our approach is now as follows: by Lemma 4.7 we may assume that b + e ≥ 1 . For 
fixed b, e, n,  i our regularity assumption provides a minimum possible value of a: we 
have a + b + e − 1 ≤ 2a − 2 and thus a ≥ b + e + 1 . In light of Lemma 4.4, it’s natural to 
set a = b + e + 1 . We can then apply Lemma 4.5 and decrease n to its minimum possible 
value of n = 2i − 1 . However we will only do this when i ≥ 2 , since we only want to 
consider degree sequences with n ≥ 3 ; our argument will need modifications when i = 1 . 
Thus, for i ≥ 2 and b + e ≥ 1 , we now consider the function G(b, e, i) defined by making 
these substitutions.

n ≥
(i − 1)R + e

R − e
.

{0, 2, 3, 4, 7, 8} , {0, 2, 3, 4, 7, 8, 9}

F(a, b, e, 5, i) > F(a, b, e, 6, i).

F(a, 0, 0, n, i) =
a

1

(a + 1)⋯ (a + (i − 2))

(2)⋯ (i − 1)

(n + 1)⋯ (n + a − 1)

(i + 1)⋯ (i + a − 1)
≥

a

1
≥ 2.

F(a, 0, 0, n, 1) =
(n + 1)(n + 2)⋯ (n + a − 1)

(2)(3)⋯ (a)
≥

(n + 1)

(2)
≥

4

2
= 2.
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We remind the reader that our goal is to find a lower bound for �i(D) and point out that at 
this point we have (for b + e ≥ 1 and i ≥ 2):

Lemma 4.8  G is an increasing function of i: G(b, e, i) ≤ G(b, e, i + 1).

Proof  We consider the quotient

We want this to be at least 1. When we cross-multiply and subtract we are left with the 
inequality:

which is evident. 	�  ◻

In consideration of this, since G(b, e, i) ≥ G(b, e, 2) for all i ≥ 2 we show, with a few 
minor exceptions, that G(b, e, 2) ≥ 2 for relevant inputs.

Lemma 4.9  If either b ≥ 2 or e ≥ 2 , then G(b, e, 2) ≥ 2.

Proof  We simply compute

This will be at least 2 if and only if

Now

If b = e then this is 2b2 − 2b − 3 which will be nonnegative provided b ≥ 2 . Otherwise, if 
either b or e is at least 2 then one of b2 − b or e2 − e will be at least 2. Thus if b ≠ e then

	�  ◻

G(b, e, i) ∶= F(b + e + 1, b, e, 2i − 1, i)

=
(b + e + 1)⋯ (b + e + (i − 1))

(b + 1)(b + 2)⋯ (b + (i − 1))

(2i)⋯ (2i + 2b + 2e − 1)

(i + 1)⋯ (i + 2b + 2e)

e!

(i)⋯ (i + e − 1)

�i(D) ≥ �i(D
i) ≥ F(a, b, e, n, i) ≥ G(b, e, i).

G(b, e, i + 1)

G(b, e, i)
=

b + e + i

b + i

(2i + 2b + 2e + 1)(2i + 2b + 2e)(i + 1)

(2i)(2i + 1)(i + 2b + 2e + 1)

i

i + e
.

4b3i2 + 4b2ei2 + 4be2i2 + 4e3i2 + 4b2i3 + 4bei3 + 4e2i3 + 4b3i + 8b2ei + 8be2i + 4e3i

+ 10b2i2 + 14bei2 + 10e2i2 + 6bi3 + 6ei3 + 2b2i + 2bei + 2e2i + 2bi2 + 2ei2 ≥ 0

G(b, e, 2) =
b + e + 1

b + 1

(4)⋯ (2b + 2e + 3)

(3)⋯ (2b + 2e + 2)

e!

(2)⋯ (e + 1)

=
b + e + 1

b + 1

2b + 2e + 3

3

1

e + 1
.

2b2 − 2be + 2e2 − b − e − 3 ≥ 0.

2b2 − 2be + 2e2 − b − e − 3 = (b − e)2 + b2 + e2 − b − e − 3.

(b − e)2 − 3 + (b2 − b) + (e2 − e) ≥ 1 − 3 + 2 = 0.
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Restricting our attention to the situation where i ≥ 2 , the lemmas we have established 
are sufficient to conclude that F ≥ 2 for the vast majority of relevant inputs. The remain-
ing cases (still assuming that i ≥ 2 ) are treated via direct computation, easily done by 
hand.

Computation 4.10  As G(b,  e,  i) is an increasing function of i, these computations will 
allow us to obtain the desired lower bound on F when i ≥ 3 . Indeed, either Lemma  4.9 
applies or else b + e = 1 and G(b, e, i) ≥ G(b, e, 3) which must be one of the numbers 
above.

We close with one final computation as well as a discussion of what happens for 
i = 1 . The reader may note that the values of n in these computations are creeping 
upwards; this is the first indication for the source of our hypothesis that n be greater 
than 9.

Computation 4.11  We now close by handling the case i = 1 . Note that i = 1 implies that 
b = 0 . We may assume that e > 0 and the assumption that reg (D) ≥ 2a − 2 implies that we 
may assume a = b + e + 1 = e + 1 . What remains is to determine when

Using (4.3), we see that

There is a finite set of inputs for which G1(e, n) < 2 , and these are the source of the 36 betti 
diagrams of pure modules which satisfy our regularity bound but to which Theorem 2.4 
does not apply.

Lemma 4.12  For all n ≥ 3 and e ≥ 1 , we have

That is, for all n, the function G1(e, n) ∶= F(e + 1, 0, e, n, 1) is increasing as a function of e.

Proof  As usual, we want to establish the following inequality.

Cross-multiplying, simplifying, and factoring, we find that this equivalent to

G(1, 0, 3) = 2.1 G(0, 1, 3) = 2.1 G(1, 1, 3) = 2.4

F(3, 1, 1, 4, 2) = 2.33 F(2, 1, 0, 4, 2) = 2.5 F(2, 0, 1, 7, 2) = 2

G1(e, n) ∶= F(e + 1, 0, e, n, 1) ≥ 2.

G1(e, n) =
(n + 1)⋯ (n + 2e)

(2)⋯ (1 + 2e)

e!

(n)⋯ (n + e − 1)
.

F(e + 1, 0, e, n, 1) ≤ F(e + 2, 0, e + 1, n, 1).

F(e + 2, 0, e + 1, n, 1)

F(e + 1, 0, e, n, 1)
=

(2e + n + 2)(2e + n + 1)

(2e + 3)(2e + 2)
⋅
(e + 1)

(e + n)
≥ 1.

(n − 1)(n − 2)(e + 1) ≥ 0,
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which is evident as n ≥ 3 and e ≥ 1 . 	�  ◻

Lemma 4.13  If n ≥ 9 , then G1(1, n) ≥ 2.

Proof  We compute

This is greater than or equal to 2 if and only if n2 − 9n + 2 ≥ 0 , which is the case for n at 
least 9. 	�  ◻

As before, some sporadic cases will be handled by a few direct computations.

Computation 4.14  We have need of one final computation that will reduce from infi-
nite to finite the number of degree sequences of pure diagrams that do not satisfy the 
hypotheses of our theorem. Indeed, if the regularity bound is strengthened by one and 
we assume that reg (D) ≤ 2a − � , then the minimum possible value of a is b + e + 2 . We 
compute:

Computation 4.15  For i ∈ {1, 2, 3, 4} and (b, e) ∈ {(1, 0), (0, 1)} , we have 
F(3, b, e, 6, i) ≥ 2.

We are now ready to put the jigsaw puzzle together and prove Theorem 2.4. For the 
reader’s convenience, we have restated it below in an equivalent form.

Proposition 4.16  Let D be a degree sequence with reg (D) ≤ 2a − 2 and n ≥ 9 . Then for 
each 1 ≤ i ≤ ⌈n∕2⌉ , �i(D) ≥ 2

(

n

i

)

 . If n ∈ {6, 7, 8} and either a ≠ 2 or b + e ≠ 1 , then the 
same conclusion holds.

Proof of Proposition 4.16  The proof amounts to piecing together the lemmas and computa-
tions above and is depicted in the flowchart (Fig. 2). A key point is that for a fixed degree 
sequence D, while Di (and the associated nonlinear parts b and e) depends on the value of 
i, the sum b + e of Di is a function only of the original degree sequence D and not of i. For 
n ≥ 9 , refer to the flow chart.

If the resolution is linear so that b + e = 0 , then Lemma  4.7 applies to give the desired 
conclusion. If b + e ≥ 3 , then we apply Lemma 4.4 and decrease a to its minimum possible 
value while maintaining our regularity assumption. Then, if i ≥ 2 , we apply Lemma 4.5, 
decreasing n to get

Since b + e ≥ 3 , either b ≥ 2 or e ≥ 2 regardless of the value of i. Thus, in all cases we may 
apply Lemma 4.8 decreasing the value of i and then apply Lemma 4.9 to conclude

G1(1, n) =
(n + 1)(n + 2)

6
⋅
1

n
.

F(3, 1, 1, 6, 2) = 4.2 G1(2, 6) = 2.

F(a, b, e, n, i) ≥ F(b + e + 1, b, e, n, i) ≥ F(b + e + 1, b, e, 2i − 1, i) = G(b, e, i).

F(a, b, e, n, i) ≥ G(b, e, i) ≥ G(b, e, 2) ≥ 2.
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If i = 1 , we still apply Lemma 4.4. Then we note that this implies b = 0 . Now Lemmas 4.12 
and 4.13 allows us to conclude

Now if b + e = 2 , the above argument fails only for those values of i where b = e = 1 
(because Lemma 4.9 fails); when i = 1 , the argument needs no modification. If b = e = 1 
and i ≥ 3 , then we apply Lemmas  4.4,  4.5, and  4.8 just as above only this time we use 
Computation 4.10 to conlcude

If i = 2 , then rather than decreasing n to 2i − 1 = 3 in applying Lemma 4.5, we set n = 4 
and use Computation 4.11.

If b + e = 1 , the chain of inequalities (4.2) still holds for i ≥ 3 and the logic from above 
still applies for i = 1 . Thus, the only remaining case is i = 2 and our assumptions imply 
(b, e) ∈ {(0, 1), (1, 0)} . When (b, e) = (0, 1) (resp. (b, e) = (1, 0) ), apply Lemma  4.5 to 
decrease n to 7 (resp. 4), then apply Computation 4.11 to get

If n ∈ {6, 7, 8} , the proof differs only in a few places and these are depicted in the flow chart 
by two blue arrows. The arrow on the left hand side concerns the setting where b + e ≥ 3 
and i = 1 , which implies that b = 0 and e ≥ 2 . This time we apply Lemma 4.5 and decrease 
n to the value of 6, then apply Lemma 4.12 setting e = 2 and use Computation 4.14

The second blue arrow concerns the case that b + e = 1 , and for finitely many degree 
sequences, our method fails here. If reg (D) ≤ 2a − 3 , then we apply Lemma 4.4 decreas-
ing a to the minimum possible value of a = b + e + 1 = 3 . Next apply Lemma  4.5 and set 
n = 6 . Noting that (b, e) ∈ {(1, 0), (0, 1)} , we use computation 4.15 to obtain

	�  ◻
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