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1 Introduction

We know from the Hilbert Basis Theorem that any ideal in a polynomial ring over a field is
finitely generated [3]. However, there remains question as to the best generators to choose
to describe the ideal. Are there generators for a polynomial ideal I that make it easy to see
if a given polynomial f belongs to I? For instance, does 2x2z2 +2xyz2 +2xz3 +z3−1 belong
to I = (x + y + z, xy + xz + yz, xyz − 1)? Deciding if a polynomial is in an ideal is called
the Ideal Membership Problem. In polynomial rings of one variable, we use long division of
polynomials to solve this problem. There is a corresponding algorithm for K[x1, . . . , xn], but
because there are multiple variables and multiple divisors, the remainder of the division is
not unique. Hence a remainder of 0 is a sufficient condition, but not a necessary condition, to
determine ideal membership. However, if we choose the correct divisors, then the remainder
is unique regardless of the order of the divisors. These divisors are called a Gröbner basis.

In order to define Gröbner bases, we must first discuss monomial orderings.

2 Monomial Orderings

Let K be a field. In K[x], we write polynomials in a canonical way, with the term of highest
degree first and each subsequent term of lesser degree than the preceding one. This assists in
the long division of polynomials, for we divide the term of highest degree of the dividend by
the term of highest degree of the divisor, and if it is not divisible, then we are done. In order
to generalize this division algorithm, we must have a corresponding ordering on monomials
in K[x1, . . . , xn], called a monomial ordering.

Definition 1. A monomial ordering is an order relation < on the set of all monomials of
K[x1, . . . , xn] such that

• For any monomials m, n, then exactly one of the following is true:m < n, n < m, or
m = n

1



• If m1 < m2 and m2 < m3, then m1 < m3

• For any monomial m "= 1, 1 < m

• If m1 < m2, then nm1 < nm2 for any monomial n

To discuss the four common examples of monomial orderings, it is helpful to first define
a way of discussing the degree of a multivariable monomial, called multidegree.

Definition 2. The multidegree of a monomial m = xi1
1 xi2

2 · · ·xin
n is defined to be mdeg(m) =

i1 + · · · + in.

Now we consider some examples of monomial orderings.

Example 1. Four common monomial orderings are Lex, Deglex, Revlex, and Degrevlex.

• In Lex, the lexicographic ordering, m1 = xi1
1 · · ·xin

n < xj1
1 · · ·xjn

n = m2 if i1 =

j1, . . . , ik−1 = jk−1, ik < jk for some k. That is, m1 < m2 if the first variable with
different exponents has a lower degree in m1 than in m2. Notice this is alphabetical
ordering, like words in a dictionary.

• In Deglex, m1 = xi1
1 · · ·xin

n < xj1
1 · · ·xjn

n = m2 if mdeg(m1) < mdeg(m2) or if
mdeg(m1) = mdeg(m2) and m1 < m2 with respect to Lex.

• In Revlex, m1 = xi1
1 · · ·xin

n < xj1
1 · · ·xjn

n = m2 if in = jn, . . . , ik+1 = jk+1, ik > jk for
some k. That is, m1 < m2 if the last variable with different exponents has a higher
degree in m1 than in m2.

• In Degrevlex, m1 = xi1
1 · · ·xin

n < xj1
1 · · ·xjn

n = m2 if mdeg(m1) < mdeg(m2) or if
mdeg(m1) = mdeg(m2) and m1 < m2 with respect to Revlex.

Each monomial ordering depends on the ordering of the variables. For instance, Lex with
the ordering x > y > z is a different ordering than Lex with y > x > z. In the above
examples, we order x1 > x2 > · · · > xn, but this is arbitrary. Hence for each of the four
common monomial orderings, we have n! possible orderings.

Once a monomial ordering is chosen, then the terms of a polynomial can be ordered in
an unambiguous way, where each term is less than the preceding term with respect to the
chosen ordering. For example, let f = 4xy2z + 4z2 − 5x3 + 7x2z2, with x > y > z. Each
monomial ordering gives a different reordering of the terms of f .

• With respect to Lex, f = −5x3 + 7x2z2 + 4xy2z + 4z2.

• With respect to Deglex, f = 7x2z2 + 4xy2z − 5x3 + 4z2.
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• With respect to Revlex, f = −5x3 + 4xy2z + 4z2 + 7x2z2.

• Finally, with respect to Degrevlex, f = 4xy2z + 7x2z2 − 5x3 + 4z2.

This allows us to define some necessary vocabulary for discussing Gröbner bases.

Definition 3. Let < be a monomial ordering on K[x1, . . . , xn], and let f ∈ K[x1, . . . , xn],
f "= 0. Then f can be uniquely written as f = c1m1+· · ·+ckmk, where m1 > m2 > · · · > mk,
and ci "= 0 ∀i = 1, . . . , k. The leading monomial of f is lm(f) = m1. The leading coefficient
of f is lc(f) = c1. The leading term of f is lt(f) = lc(f) lm(f) = c1m1.

If I is an ideal in K[x1, . . . , xn], we define lm(I) to be the ideal generated by the leading
monomials of all elements of I.

Now, one may think that lm(I) is just the ideal generated by the leading monomials of the
generators of I, but this is not the case. For example, if I = (x+y+z, xy+xz+yz, xyz−1),
and our monomial ordering is Revlex, then the ideal generated by the leading monomials of
the generators is J = (x, xy, xyz) = (x). However, y2 + yz + z2 = (y + z)(x + y + z)− (xy +

xz + yz) ∈ I, so y2 ∈ lm(I), but y2 /∈ J . However, Gröbner bases provide a simple way to
find generators for lm(I), and in fact are defined to have this property.

3 Gröbner Bases

As aforementioned, there is a division algorithm for K[x1, . . . , xn], which is a generalization of
the traditional approach of long division of polynomials. It involves simultaneously dividing
multiple divisors into multiple dividends. In order to understand the usefulness of Gröbner
bases, we must first discuss this algorithm.

3.1 A Division Algorithm

In K[x], we divide one polynomial by another through comparing their leading terms. Sim-
ilarly, in K[x1, . . . , xn], we compare leading terms. If the leading term of one of the divisors
divides the leading term of the dividend, we multiply that divisor by an appropriate mono-
mial and cancel the leading terms. This is best seen through examples.

Example 2. We will divide f = xy1 by f1 = xy +1 and f2 = y +1, using Lex ordering with
x > y. We may set up our division as follows, leaving space for the necessary monomials:

a1 :

a2 :

xy + 1

y + 1

√
xy2 + 1

3



Now, because f1 is listed first, we consider lt f and lt f1. Since lt f1 divides lt f , we write
the quotient q in a1 and then subtract q · f1 from f .

a1 : y

a2 :

xy + 1

y + 1

√
xy2 + 1

xy2 + y

− y + 1

Now we repeat the process on the new polynomial p. Since lt f1 does not divide lt p but
lt f2 does, we write the quotient in a2 and then multiply and subtract.

a1 : y

a2 : −1

xy + 1

y + 1

√
xy2 + 1

xy2 + y

− y + 1

− y − 1

2

Because neither lt f1 nor lt f2 divides the new polynomial, this is our remainder. Hence,

xy2 + 1︸ ︷︷ ︸
f

= ( y︸︷︷︸
a1

)(xy + 1︸ ︷︷ ︸
f1

) + ( −1︸︷︷︸
a2

)(y + 1︸ ︷︷ ︸
f2

) + 2︸︷︷︸
r

.

The previous example ends with a nice remainder. However, it is possible to have a
remainder with a leading term that is not divisible by any of the leading terms of the divisors,
but one of the leading terms of the divisors divides a different term of the remainder. In this
case, the division can continue by moving the leading term to a "remainder" column.

Example 3. Let f = x2y +xy2 + y2, f1 = xy− 1, and f2 = y2− 1. We will use Lex ordering
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with x > y. Performing long division, we see

a1 : x + y

a2 : 1 r

xy − 1

y2 − 1

√
x2y + xy2 + y2

x2y − x

xy2 + x + y2

xy2 − y

x + y2 + y

y2 + y → x

y2 − 1

y + 1

1 → x + y

0 → x + y + 1

Hence,
xy2 + xy2 + y2

︸ ︷︷ ︸
f

= (x + y︸ ︷︷ ︸
a1

)(xy − 1︸ ︷︷ ︸
f1

) + ( 1︸︷︷︸
a2

)(y2 − 1︸ ︷︷ ︸
f2

) + x + y + 1︸ ︷︷ ︸
r

.

This example is a fairly complete illustration of the division algorithm. For a statement
of the general algorithm, the reader may consult [1], page 62. This division algorithm proves
the following proposition.

Proposition 4 (Division Algorithm). Fix a monomial ordering. Let F = (f1, . . . , fm) be an
ordered m-tuple of polynomials in K[x1, . . . , xn]. Then for every f ∈ K[x1, . . . , xn], f can
be written as

f = a1f1 + · · · + amfm + r

for some a1, . . . , an, r ∈ K[x1, . . . , xn], where no term of r is divisible by lt(f1), . . . , lt(fm).
We call r the remainder of f on division by F .

3.2 Gröbner Bases and Some Properties

Now, we know the division algorithm gives a remainder. However, unlike the familiar division
algorithm in one variable, the remainder from this division algorithm is not unique. For
example, let I = (g1, g2) = (x2, xy − y2) and let f = x2y. Now, f ∈ I since f is a nonzero
multiple of one of the generators of I, and so by dividing first by g1, the remainder of f is 0.
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However, by dividing first by g2, we see

f = (x + y)(xy − y2) + y3.

This gives the remainder of f is y3, but y3 "= 0. Hence the remainder is not unique. However,
if we choose the right generators, the remainder is unique, and so it is easy to solve the Ideal
Membership Problem. These generators are a Gröbner basis.

Definition 5. Let I be an ideal in K[x1, . . . , xn]. A set g1, . . . , gm, where gi ∈ I ∀1 ≤ i ≤ m,
is a Gröbner basis for I if (lm(g1), . . . , lm(gm)) = lm(I).

Proposition 6. If g1, . . . , gm is a Gröbner basis for an ideal I, then (g1, . . . , gm) = I.

Proof. Clearly, (g1, . . . , gm) ⊂ I, since gi ∈ I for all 1 ≤ i ≤ m. Let f ∈ I. Then we can
divide f by {g1, . . . , gm}, so f can be written as

f = a1g1 + · · · + amgm + r

where no term in r is divisible by lm(gi) for any i = 1, . . . ,m. We must show that r = 0.
Notice that

r = f − a1g1 + · · · + amgm ∈ I.

If r "= 0, lm(r) ∈ lm(I) = (lm(g1), . . . , lm(gm)). Thus, because lm(r) is a monomial,
lm(r) must be divisible by some lm(gi). This is a contradiction, so r = 0 and therefore
f ∈ (g1, . . . , gm).

Proposition 7. Every ideal I ⊂ K[x1, . . . , xn] other than (0) has a Gröbner basis.

Proof. lm(I) is generated by the monomials lm(g), where g ∈ I \ {0}. Because lm(I) ⊂
K[x1, . . . , xn], lm(I) is finitely generated, so there exist g1, . . . , gm such that lm(I) =

(lm(g1), . . . , lm(gm)). By Proposition 6, {g1, . . . , gm} generate I.

Theorem 8. Let G = (g1, . . . , gm) be a Gröbner basis for an ideal I. Let f ∈ K[x1, . . . , xn].
Then there exists a unique r ∈ K[x1, . . . , xn] such that (i) no term of r divides lm(gi) for
any i, and (ii) there exists a g ∈ I such that f = g + r.

Proof. The division algorithm for K[x1, . . . , xn] gives f = a1g1 + · · · + amgm + r, which
satisfies (i). Define g = a1g1 + · · · + amgm to satisfy (ii).

To prove uniqueness, let f = g+r1 = h+r2 as in (ii). Then r1−r2 = h−g ∈ I. Hence, if
r1 "= r2, then lm(r1− r2) ∈ lm(I), so lm(r1− r2) is divisible by some lm(gi), since lm(I) is
a monomial ideal. However, this contradicts the assumption that no term of r1 or r2 divides
lm(gi) for any i. Hence r1 − r2 = 0. Therefore, r is unique.
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The r in Theorem 8 denotes the remainder of division of f by G, and the uniqueness
of r guarantees that r is the remainder regardless of the order of the elements of G in the
division algorithm. This gives us a necessary and sufficient condition for membership to I,
thereby solving the Ideal Membership Problem.

Corollary 9. Let G be a Gröbner basis for an ideal I, and let f ∈ K[x1, . . . , xn]. We write
f = g + r where g ∈ I as above. Then f ∈ I if and only if r = 0.

Proof. If r = 0, then clearly f ∈ I. If f ∈ I, then f = f + 0 satisfies the two conditions of
Theorem 8. By uniqueness of r, this means 0 is the remainder of f on division by G.

3.3 A Criterion for a Gröbner Basis

Now that we have seen uses for Gröbner bases, how do we determine if a given generating set
f1, . . . , fk is a Gröbner basis? As discussed previously, not every generating set is a Gröbner
basis, because sometimes there are combinations of the generators that have cancellations of
leading terms, leaving only smaller terms. These smaller monomials now appear in lm(I),
but are not accounted for in the ideal generated by the leading monomials of the generators
of I. For instance, let I = (xy2 − y3, xy) and let the ordering be Revlex. Then −y3 =

(xy2 − y3)− y(xy) ∈ I, so y3 ∈ lm(I). But y3 /∈ (lm(xy2 − y3), lm(xy)) = (xy2, xy) = (xy).
To study this, we look at special combinations of the generators, called syzygies and S-
polynomials.

Definition 10. Let R = K[x1, . . . , xn], Rk a free module, f ∈ R and F = (f1, . . . , fk) ∈ Rk.
A syzygy of F is an element s = (s1, . . . , sk) ∈ Rk such that s1f1 + · · · + skfk = 0. A
representation of f with respect to F is an element H = (h1, . . . , hk) such that h1f1 + · · · +
hkfk = f .

Note that if H and H ′ are representations of f , then H −H ′ is a syzygy of F . Similarly,
if H is a representation and S is a syzygy of F , then H + S is a representation of f with
respect to F .

Proposition 11. Suppose m1, . . . ,mk are monomials and S = (s1, . . . , sk) is a syzygy
of (m1, . . . ,mk). Let ei denotes the ith basis element of the free module Rk, i.e., ei =

(0, . . . , 0, 1, 0 . . . , 0). Then S is a linear combination of the syzygies

sij =
lcm(mi, mj)

mi
ei −

lcm(mi, mj)

mj
ej,

where 1 ≤ i ≤ j ≤ k.
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Proof. Since s1m1 + · · · + skmk = 0, the terms simi must all cancel, so we can assume each
sj is of the form cjnj, where nj is a monomial such that njmj = xi1

1 · · ·xin
n =: m for some

i1, . . . , in ∈ Z+ for all j. Thus, c1 + · · ·+ck = 0. The solutions to this are linear combinations
of ei − ej, 1 ≤ i ≤ j ≤ k. Hence, (s1, . . . , sk) are linear combinations of

m

mi
ei −

m

mj
ej,

which is a multiple of sij.

Definition 12. Let f1, f2 be monic elements of R, and let < be a monomial ordering on R.
Then the S-polynomial of (f1, f2) on < is

S(f1, f2) =
lcm(lm(f1), lm(f2))

lm(f1)
f1 −

lcm(lm(f1), lm(f2))

lm(f2)
f2.

Notice that S-polynomials are designed for cancellation of terms.

Theorem 13 (Criterion for a Gröbner basis). Suppose I is a polynomial ideal, G =

{f1, . . . , fm} is a basis for I, and Si,j = S(fi, fj) are the S-polynomials. Then G is a Gröbner
basis of I if and only if for all pairs i "= j, the remainder on division of Si,j by G is zero.

Proof. ⇒: If G is a Gröbner basis, then all Si,j ∈ I. Hence by Corollary 9, the remainder
on division of Si,j is 0.
⇐: Assume the remainder of Si,j is 0, and let f ∈ I. We need to show that lm(f) ∈

(lm(f1), . . . , lm(fm)). Because {f1, . . . , fm} generate I, we can write f = a1f1 + · · ·+ amfm

for some a1, . . . , am ∈ R. Now, either max{lm(aifi)} > lm(f) or max{lm(aifi)} = lm(f).
In the latter case, then lm(f) = lm(ai) lm(fi) for some i, so lm(f) ∈ (lm(f1), . . . , lm(fm)),
so assume the former is true.

Now, A = (a1, . . . , am) is a representation of f . We will construct a syzygy Z such that
A′ = A + Z is another representation of f with max{lm(a′ifi)} < max{lm(aifi)}. Because
there is no strictly decreasing sequence of monomials, this process will eventually terminate,
and then we will be in the case where max{lm(aifi)} = lm(f).

Let J = {j : lm(ajfj) = max{lm(aifi)}}. We know the leading terms in
∑

i∈J aifi cancel
in order for lm(f) < max{lm(aifi)}. Let SA = (s1, . . . , sm) where si = lt(ai) if i ∈ J and
si = 0 otherwise. Then SA is a syzygy for (lm(f1), . . . , lm(fm)). By Proposition 11, SA is a
linear combination of sij’s, so SA =

∑
1≤i≤j≤m tijsij. By definition, the sij represents Sij with

respect to F = (f1, . . . , fm), so s1f1 + · · · + smfm =
∑

tijSij. Now, since the remainder of
Sij is 0, Sij is a linear combination of fi’s, so Sij =

∑m
t=1 hij,tft. Now, Hij = (hij,1, . . . , hij,m)
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is a representation of Sij with respect to F , so sij −Hij is a syzygy of F . Let

Z =
∑

1≤i≤j≤m

tij(sij −Hij),

which is also a syzygy of F . Hence, A−Z = A′ = (a′1, . . . , a
′
m) is a representation of f with

respect to F . By construction, max{lm(aifi)} > max{lm(a′ifi)}.

Example 4. We will show that G = {x2, xy−y2, y3} is a Gröbner basis for I = (x2, xy−y2)

with respect to Lex. Notice

y3 = (−x− y)(xy − y2) + y(x2).

Hence y3 ∈ I, so G generates I. Now,

S1,2 =
lcm(x2, xy)

x2
(x2)− lcm(x2, xy)

xy
(xy − y2) = x2y − x2y + xy2 = xy2

S2,3 =
xy3

xy
(xy − y2)− xy3

y3
y3 = −y4

S1,3 =
x2y3

x2
x2 − x2y3

y3
y3 = 0

Clearly, both S2,3 and S1,3 give a remainder of 0 when divided by G. Because xy2 =

y(xy − y2) + y3, then the remainder of S1,2 is also 0. Therefore, by Theorem 13, G is a
Gröbner basis.

Example 5. Let I = (x+ y + z, xy +xz + yz, xyz− 1), G = {x+ y + z, y2 + yz + z2, z3− 1},
and IG = (G). We will show that G is a Gröbner basis for I with respect to Lex. Notice

xy + xz + yz = (y + z)(x + y + z)− (y2 + yz + z2)

xyz − 1 = yz(x + y + z)− z(y2 + yz + z2) + (z3 − 1)

y2 + yz + z2 = (y + z)(x + y + z)− (xy + xz + yz)

z3 − 1 = z2(x + y + z)− z(xy + xz + yz) + (xyz − 1)

Hence I = IG. Now,

S1,2 =
lcm(x, y2)

x
(x + y + z)− lcm(x, y2)

y2
(y2 + yz + z2) = −xyz − xz2 + y3 + y2z

= −yz − z2(x + y + z) + (y + z)(y2 + yz + z2)
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S1,3 = z3(x + y + z)− x(z3 − 1) = x + yz3 + z4 = x + y + z + (y + z)(z3 − 1)

S2,3 = z3(y2 + yz + z2)− y2(z3 − 1) = y2 + yz4 + z5 = y2 + yz + z2 + (yz + z2)(z3 − 1)

Therefore, each Sij is divisible by G, so G is a Gröbner basis.

3.4 Buchberger’s Algorithm

By Proposition 7, we know that every ideal has a Gröbner basis. Buchberger’s algorithm
provides instructions to construct a Gröbner basis from any given generating set.

Given an ideal I = (f1, . . . , fm), calculate all of the S-polynomials. Divide the S-
polynomials by {f1, . . . , fm}.. If the remainder is nonzero, extend (f1, . . . , fm) with the
remainder. Calculate all of the S-polynomials which have not previously been calculated,
and repeat the process until all of the remainders of the S-polynomials are zero.

This process will terminate in a finite number of steps. For each nonzero remainder,
the leading monomial of the remainder is not in (lm(f1), . . . , lm(fm)), so extending the
generating set of I also extends the monomial ideal generated by the leading monomials of the
generating set of I. Because the ideal of leading monomials of the generating set is a subset
of lm(I) and lm(I) has a finite generating set, the process will terminate. Additionally, this
algorithm does give a Gröbner basis by Theorem 13.

Example 6. Let I = (x2y−1, xy2−x) = (g1, g2), and let the monomial ordering be Deglex.
Then S1,2 = y(x2y−1)−x(xy2−x) = −y+x2. Since lm(−y+x2) = x2 is not divisible by either
lm(g1) or lm(g2), g3 = x2−y. Continuing the algorithm, S1,3 = (x2y−1)−y(x2−y) = −1+y2,
so lm(S1,3) = y2. Hence g4 = y2 − 1. Further,

S2,3 = x(xy2 − x)− y2(x2 − y) = y4 − x2

= (y2 + 1)(y2 − 1)− (x2 − y)− y + 1

so the remainder of S2,3 divided by G is g5 = −y + 1. Now,

S1,4 = y(x2y − 1)− x2(y2 − 1) = x2 − y = g3

S2,4 = (xy2 − x)− x(y2 − 1) = 0

S3,4 = y2(x2 − y)− x2(y2 − 1) = −y3 + x2 = −yg4 + g3

Hence each of these are divisible by {g1, g2, g3, g4}. The reader may verify that for every
i = 1, 2, 3, 4, Si,5 is divisible by {g1, g2, g3, g4, g5}. Therefore, {g1, g2, g3, g4, g5} is a Gröbner
basis for I.
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4 Applications of Gröbner Bases

As aforementioned, Gröbner bases provide a solution to the Ideal Membership Problem. If
f is a polynomial and I is an ideal, then we can determine if f ∈ I by finding a Gröbner
basis G for I and calculating the unique remainder of f divided by G. As in Corollary 9,
this remainder is 0 if and only if f ∈ I.

Example 7. Let I = (x+y+z, xy+xz+yz, xyz−1) and f = 2x2z2 +2xyz2 +2xz3 +z3−1.
As proven in Example 5, a Gröbner basis for I is G = {x + y + z, y2 + yz + z2, z3 − 1}.
Performing long division, we see that

f = 2xz2(x + y + z) + (z3 − 1).

Hence f ∈ I.

Example 8. Let I = (xz − y2, x3 − z2) and f = xy − 5z2 + x. With respect to Deglex, a
Gröbner basis for I is G = {xz − y2, x3 − z2, x2y2 − z3, xy4 − z4, y6 − z5}. Now, lm(G) =

(xz, x3, x2y2, xy4, y6). Clearly, lm(f) = xy /∈ lm(G), so therefore f /∈ I.

Another application of Gröbner bases lies in algebraic geometry. Smith [3] shows that
the projective closure of an affine variety is the vanishing of the homogenization of the ideal.
However, the homogenization of the ideal is not always equal to the ideal generated by the
homogenization of the generators. Yet if the generating set is a Gröbner basis, these are
equal.

Proposition 14. Let I be an ideal in K[x1, . . . , xn], and let h(I) be its homogenization in
K[x1, . . . , xn, y]. Suppose G = {g1, . . . , gm} is a Gröbner basis for I with respect to a graded
monomial order, i.e., a monomial ordering that depends on multidegree of polynomials. Then
h(G) = {h(g1), . . . , h(gm)} is the Gröbner basis for h(I).

Proof. Because h(G) ⊂ h(I), it suffices to show that lm(h(I)) = (lm(h(g1)), . . . , lm(h(gm))),
or if f ∈ h(I) is homogeneous, then lm(f) ∈ (lm(h(g1)), . . . , lm(h(gm))). Because f is
homogeneous, f = yp h(g) for some h ∈ I and some p ∈ Z+. Now, since the monomial
ordering is graded, for any h ∈ h(I), lm(h(h)) = lm(h). Hence, lm(f) = yp lm(h(g)) =

yp lm(g). So

lm(f) ∈ (lm((g1)), . . . , lm((gm))) = (lm(h(g1)), . . . , lm(h(gm))).

4.1 Elimination Theory

A third application of Gröbner bases lies in elimination theory. Elimination theory gives
a way to solve systems of polynomial equations by eliminating some of the variables from
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some equations, and then back-solving. For example, if our system of polynomials is





x2 + y + z = 1

x + y2 + z = 1

x + y + z2 = 1

then we can consider the ideal I = (x2 + y + z− 1, x + y2 + z− 1, x + y2 + z− 1). A Gröbner
basis for I is:

g1 = x + y + z2 − 1

g2 = y2 − y − z2 + z

g3 = 2yz2 + z4 − z2

g4 = z6 − 4z4 + 4z3 − z2

= z2(z − 1)2(z2 + 2z − 1)

Notice that g4 is only in terms of z, so we can obtain the possible values of z from this
equation. We see that z can be 0, 1, or −1±

√
2. Since both g3 and g4 are in terms of only y

and z, we can substitute for z and obtain the possible values for y. From here, we can solve
for the possible values of x. This system of equations has 5 solutions:

(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1 +
√

2,−1 +
√

2,−1 +
√

2), (−1−
√

2,−1−
√

2,−1−
√

2).

In solving this system of equations, the process can be divided into two parts. First, we
eliminate variables, called the Elimination Step, and then we extend our solutions by back-
solving, called the Extension Step.

First, we study the Elimination Step. Note that observing that g4 is only in terms of z

can also be stated as
g4 ∈ I ∩ C[z].

Generalizing this leads to a definition.

Definition 15. Let I = (f1, . . . , fm) ⊂ K[x1, . . . , xn]. The kth elimination ideal Ik is the
ideal of K[xk+1, . . . , xn] defined as

Ik = I ∩K[xk+1, . . . , xn]

Solving the Elimination Step means finding polynomials in I that are not in terms of
x1, . . . , xk, which amounts to finding the kth elimination ideal. Gröbner bases makes this
easy.

12



Theorem 16 (The Elimination Theorem). Let I be an ideal and G a Gröbner basis with
respect to Lex, where x1 > x2 > . . . > xn. Then, for every 0 ≤ k ≤ n, the set

Gk = G ∩K[xk+1, . . . , xn]

is a Gröbner basis for Ik.

Proof. Fix k. Since Gk ⊂ Ik, so it suffices to show that (lm(Gk)) = lm(Ik). Clearly,
(lm(Gk)) ⊂ lm(Ik).

Let f ∈ Ik. We want to show that lm(f) is divisible by lm(g) for some g ∈ Gk. Now,
f ∈ I, so lm(f) divisible by lm(g) for some g ∈ G. Since f ∈ Ik, this means that lm(g)

involves only xk+1, . . . , xn. Since the ordering is Lex with x1 > x2 > . . . > xn, this means all
terms of g only involve xk+1, . . . , xn, so g ∈ K[xk+1, . . . , xn]. Hence g ∈ Gk.

Now we may turn our attention to solving the Extension Step. First, we define a partial
solution.

Definition 17. Let I be a systems of equations in K[x1, . . . , xn]. A solution (ak+1, . . . , an) ∈
V(Ik) is a partial solution of the original equations.

When we solve the equation in one variable, we find a partial solution. To extend a
partial solution, we want to find a coordinate ak such that (ak, ak+1, . . . , an) ∈ V(Ik−1). If
Ik−1 = (g1, . . . , gm), then we want solutions xk = ak to the equations

g1(xk, ak+1, . . . , an) = · · · = gm(xk, ak+1, . . . , an) = 0.

These are polynomials in one variable, so the possible ak is just the roots of the greatest
common divisor of the m polynomials. However, they might not have a common root, so
not all partial solutions extend to complete solutions.

Example 9. Consider the following system of equations:
{

xy = 1

xz = 1

Clearly, I1 = (y− z). So, the partial solutions are of the form (a, a), since these are precisely
the elements in I1. Hence the complete solutions are (1/a, a, a), because x = 1/y = 1/x, if
a "= 0. If a = 0, the system is not consistent, so this does not admit a complete solution.

We extend a partial solution one coordinate at a time until we have completed it, so we
only need to study extensions by one coordinate. For now, we shall restrict to the case where
k = 1.
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Theorem 18. Let I = (f1, . . . , fm) ⊂ C[x1, . . . , xn]. For each 0 ≤ i ≤ m, write

fi = gi(x2, . . . , xn)xNi
1 + terms of degree < Ni.

Suppose (a2, . . . , an) is a partial solution. If (a2, . . . , an) /∈ V(g1, . . . , gm), then there exists
a1 ∈ C such that (a1, . . . , an) ∈ V(I).

The proof of this uses resultants, so it will not be covered here.1

This theorem means that the Extension Step fails only when the leading coefficients of
the polynomials vanish simultaneously. To return to Example 9, we see that the leading
coefficients of x are y and z in each polynomial. Thus V(g1, g2) = V(y, z), which contains
only the point (0, 0), the lone point which cannot be extended.

An easy corollary to this theorem occurs when the leading coefficients are constant.

Corollary 19. Assume that for some i, fi = cxN
1 +terms of degree < N . Then if (a2, . . . , an) ∈

V(I1), then there exists a1 such that (a1, a2, . . . , an) ∈ V(I).

Proof. Follows immediately from c "= 0 ⇒ V(g1, . . . , gm) = ∅.

4.1.1 The Geometry of Elimination

Now, we will study a geometric interpretation of elimination theory. Elimination corresponds
to projecting a variety onto a lower dimensional subspace.

Definition 20. Let V = V(f1, . . . , fm) ⊂ Cn. We define the projection map

πk : Cn → Cn−k

(a1, . . . , an) -→ (ak+1, . . . , an)

Notice πk(V ) ⊂ Cn−k.
We can relate this projection map to the kth elimination ideal.

Proposition 21. πk(V ) ⊂ V(Ik).

Proof. Let f ∈ Ik and (a1, . . . , an) ∈ V . Then f vanishes at (a1, . . . , an), but f involves only
xk+1, . . . , xn, so

f(ak+1, . . . , an) = f(πk(a1, . . . , an)) = 0.

Hence f vanishes at all points of πk(V ).
1For a version of the proof, the reader can consult [1], page 161.
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Now, we have a precise definition for πk(V ), using our new knowledge from Proposition
21.

πk(V ) = {(ak+1, . . . , an) ∈ V(Ik) : ∃a1, . . . , ak ∈ C with (a1, . . . , ak, ak+1, . . . , an) ∈ V }.

So πk(V ) is exactly the partial solutions which extend to complete solutions. For instance,
if we return to Example 9, we see that πk(V ) = {(a, a) ∈ C2 : a "= 0}.

Although π1(V ) is not necessarily an affine variety, the Closure Theorem provides a strong
statement about the relationship between πk(V ) and V(Ik).

Theorem 22 (The Closure Theorem). V(Ik) is the smallest affine variety containing πk(V ) ⊂
Cn−k.

Proof. We have shown that V(I(S)) is the smallest affine variety containing S, so we must
show that V(Ik) = V(I(πk(V ))). By the lemma, we know πk(V ) ⊂ V(Ik). Since V(I(πk(V )))

is the smallest variety containing πk(V ), this imples that V(I(πk(V ))) ⊂ V(Ik).
Suppose f ∈ I(πk(V )), so f(ak+1, . . . , an) = 0 for all (ak+1, . . . , an) ∈ πk(V ). Then

f(a1, . . . , ak, ak+1, . . . , an) = 0 for all (a1, . . . , an) ∈ V , since f only involves xk+1, . . . , xn.
By Nullstellensatz, fN ∈ I for some integer N . But since f does not depend on x1, . . . , xk,
neither does fN , so f ∈ Ik. So, f ∈

√
Ik, hence I(πk(V )) ⊂

√
Ik. Thus, V(Ik) = V(

√
Ik) ⊂

V(I(πk(V ))).

This shows that the projection map projects a variety into a very specific lower-dimensional
variety, which is in fact the Zariski closure of the projection.

15



References

[1] Cox, David, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms. Springer:
New York, 1997.

[2] Fröberg, Ralf. An Introduction to Gröbner Bases. John Wiley and Sons: Chichester,
1997.

[3] Smith, Karen. An Invitation to Algebraic Geometry. Springer: New York, 2000.

16


