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Abstract Given a linear space L in affine space A
n , we study its closure ˜L in the

product of projective lines (P1)n .We show that the degree, multigraded Betti numbers,
defining equations, and universal Gröbner basis of its defining ideal I (˜L) are all
combinatorially determined by the matroid M of L . We also prove that I (˜L) and all
of its initial ideals are Cohen–Macaulay with the same Betti numbers, and can be used
to compute the h-vector of M . This variety ˜L also gives rise to two new objects with
interesting properties: the cocircuit polytope and the external activity complex of a
matroid.

Keywords Betti numbers · Universal Gröbner bases · Matroids · State polytopes ·
Stanley–Reisner ideals

1 Introduction

If L ⊂ A
n is a d-dimensional linear space in affine spaceA

n over an infinite fieldk, its
usual closure in P

n is one of the simplest projective varieties. It is trivially a projective
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linear space, and its defining ideal is generated by n − d linear forms. However, this
is only one of many possible closures!

In this paper, we study the next simplest possibility. Choose a frame F =
{〈e1〉, . . . , 〈en〉} where the ei form a basis of n-space and 〈 〉 denotes linear span.
This frame gives rise to an embedding A

n ↪→ (P1)n , and we consider the closure
˜L ⊂ (P1)n of L in this product of projective lines. This case is already quite inter-
esting; several algebraic, combinatorial, and geometric invariants of ˜L are determined
purely combinatorially. There is a matroid M which encodes the relative position of
L with respect to the frame F . Our main result is that this matroid, which in principle
only knows linear information about L , actually determines much of the structure
of ˜L:

Theorem 1.1 Let L ⊂ A
n be a linear space and let ˜L be its closure via the embedding

A
n ↪→ (P1)n. The following invariants depend only on the matroid of L: the Z

n–
multidegree of ˜L, the multigraded Betti numbers of I (˜L) and all its initial ideals, the
number of minimal generators of the defining ideal I (˜L), and the set of initial ideals
of I (˜L). Furthermore, I (˜L) and all of its initial ideals are Cohen–Macaulay with the
same Betti numbers:

βi,a(S/I (˜L)) = βi,a(S/(in< I (˜L))).

In fact, when we state this result more precisely in Theorem 1.3, we will see that
several important matroid invariants are realized as algebro-geometric invariants of the
projective variety ˜L . For instance, we can use ˜L to compute algebraically the h-vector
of the matroid of L , and the internal activities of its bases under any order. This variety
also gives rise to two new objects with interesting properties: the cocircuit polytope
and the external activity complex of a matroid.

The paper is organized as follows. In Sect. 1.1, we define our main subject of
study: the closure of a linear space L ⊂ A

n in (P1)n . We state our main algebraic
and combinatorial theorems in Sects. 1.2 and 1.3, respectively, illustrating them in an
example. Section 1.4 discusses related work. In Sects. 2 and 3, we collect the basic
facts from matroid theory and commutative algebra that we will need. In Sects. 4 and
5, respectively, we introduce and study two combinatorial objects that arise naturally
in our work: the cocircuit polytope and the external activity complex of a matroid. We
study their combinatorial properties, which may be interesting in their own right, but
also play a key role in the proof of our main result, Theorem 1.3. We carry out this
proof in Sect. 6. Finally, in Sect. 7, we extend our results to affine linear spaces. In
that case, the invariants of ˜L are controlled by two matroids, and Las Vergnas’s Tutte
polynomial of a strong map (or morphism) of matroids plays an interesting role.

1.1 Closures of linear spaces

Choose a frame F = {〈e1〉, . . . , 〈en〉} where the ei form a basis of kn and 〈 〉 denotes
linear span. This allows us to identify A

n with A
1 ×· · ·×A

1. The usual embedding of
A
1 intoP

1 by adding a single point at infinity then gives us an embeddingA
n ↪→ (P1)n .
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Definition 1.2 If X is an affine variety in affine spaceA
n , we let ˜X denote the scheme-

theoretic closure ˜X of X in (P1)n inducedby this embeddingA
n ↪→ (P1)n . If I = I (X)

is the ideal of polynomials vanishing at X , we let˜I = I (˜X) be the ideal of polynomials
vanishing at ˜X .

For the remainder of the paper, we fix a choice of coordinates, and let S =
k[x1, . . . , xn]. The ideals I (X) ⊂ S and I (˜X) ⊂ k[x1, . . . , xn, y1, . . . , yn] of ˜X
are related by

I (˜X) := ( f h | f ∈ I ),

where f h is the total homogenization of f , obtained by substituting xi with xi/yi in
f and clearing denominators.
For general X , it does not suffice to only homogenize a set of generators of I to

cut out ˜X . It seems quite difficult to find a canonical presentation of the ideal I (˜X),
or to determine its algebraic invariants, such as the degree, number of generators, or
multigraded Betti numbers. However, we show that when X = L is a linear subspace
(resp., an affine subspace), all of these questions have elegant answers in terms of the
matroid of L (resp., the strong map of matroids), which encodes the relative position
of the subspace L with respect to the chosen frame F . Let us describe this matroid in
two ways.

Our linear space L corresponds to a point in Gr(d, n), the Grassmannian of
d-subspaces of kn . The choice of a basis {e1, . . . , en} gives an embedding π :
Gr(d, n) → P(

∧d kn) which maps a vector subspace L of kn to its Plücker vec-
tor π(L) in P(

∧d kn). Although the coordinates of π(L) depend on the choice of
basis, the set of coordinate hyperplanes containing π(L) only depends on the frame
F . This set can be identified with the matroid M of L: For a d-subset S of [n], the
hyperplane HS contains π(L) if and only if [n] − S is not a basis of M .

More explicitly, if A is an (n − d) × n matrix whose rows generate the ideal
I = I (L) when regarded as linear forms, then the bases of the matroid M are the
linearly independent (n − d)-subsets of columns of A.1 This matroid will play a key
role in what follows.

1.2 Our results on closures of linear spaces

Given a linear space L ⊂ A
n , we are interested in computing various invariants of the

closure ˜L ⊂ (P1)n and its ideal I (˜L) ⊂ k[x1, . . . , xn, y1, . . . , yn]. We consider two
gradings of k[x1, . . . , xn, y1, . . . , yn] which make the ideal I (˜L) homogeneous: the
bidegree with

bideg xi = (1, 0), bideg yi = (0, 1) (1 ≤ i ≤ n)

1 Sometimes the dual choice is made: One may also associate with L the dual matroid of rank d, whose
bases are the d-subsets S ⊂ [n] such that HS contains π(L). These two choices are equivalent, and we have
chosen the one that is more convenient for us.

123



202 J Algebr Comb (2016) 43:199–235

and the Z
n-multidegree given by

mdeg xi = mdeg yi = ei (1 ≤ i ≤ n)

where ei is the i th unit vector in Z
n .

The following theorem shows that the structure of the matroid M of L determines
several important geometric, algebraic, and combinatorial invariants of I (˜L). Con-
versely, it offers a geometric context where Tutte’s basis activities and other matroid
invariants appear very naturally. We will discuss in detail all the relevant definitions
in Sect. 2.

Theorem 1.3 Let L ⊂ A
n be a d-dimensional linear space and let ˜L ⊂ (P1)n be the

closure of L induced by the embedding A
n ↪→ (P1)n. Let M be the matroid of L; it

has rank r = n − d. Then:

(a) The homogenized cocircuits of I (L) minimally generate the ideal I (˜L).
(b) The homogenized cocircuits of I (L) form a universal Gröbner basis for I (˜L),

which is reduced under any term order.
(c) The Z

n-multidegree of ˜L is
∑

B
tb1 · · · tbr summing over all bases B = {b1, . . . , br }

of M.
(d) The bidegree of ˜L is tr hM (s/t) where hM is the h-polynomial of M.
(e) There are at most r ! · b distinct initial ideals of I (˜L), where b is the number of

bases of M.
(f) The initial ideal in< I (˜L) is the Stanley–Reisner ideal of the external activity

complex Act<(M∗) of the dual matroid M∗. Its primary decomposition is:

in< I (˜L) =
⋂

B basis

〈 xe : e ∈ I A<(B) , ye : e ∈ I P<(B)〉

where B = I A<(B) 	 I P<(B) is the partition of B into internally active and
passive elements with respect to <.

Remark 1.4 A remark is in order about Theorem 1.3 (f). An initial ideal in< I (˜L)

is determined by a term order < on k[x1, . . . , xn, y1, . . . , yn]. In turn, < leads to a
linear order on [n] which we also denote <, defined by i < j for i, j ∈ [n] whenever
xi y j > x j yi (or, more revealingly, xi/yi > x j/y j ) in the term order <. This is the
linear order < with respect to which I A(B) and I P(B) are defined.

We find it remarkable that the matroid M , which only contains linear informa-
tion about L , determines so many invariants of the projective variety ˜L . Perhaps this
becomes less surprising once we know (a) and (b), which tell us that the form of
the defining equations for ˜L is determined by the matroid. However, in our proof of
(a) and (b), we rely on having already computed (using geometric and combinatorial
arguments) the invariants of ˜L and its degenerations in (c) and (f).

Theorem 1.5 Let L be a linear d-space in A
n, and I (˜L) the ideal of its closure in

(P1)n. The nonzero multigraded Betti numbers of S/I (˜L) are precisely:

βi,a(S/I (˜L)) = |μ(F,̂1)|
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for each flat F of M, where i = r − r(F), and a = e[n]−F . Here μ is the Möbius
function of the lattice of flats of M. Furthermore, all of the initial ideals have the same
Betti numbers:

βi,a(S/I (˜L)) = βi,a(S/(in< I (˜L)))

for all a and for every term order <.

As a corollary, we obtain the following result.

Theorem 1.6 If L is a linear space, then the ideal I (˜L) and all of its initial ideals
are Cohen–Macaulay.

Before stating the relevant definitions in Sect. 2, we now briefly introduce them
while we discuss an example in detail.

1.2.1 An example

Example 1.7 Let L be the subspace of A
6 cut out by the linear ideal

I = 〈x1 + x2 + x6, x2 − x3 + x5, x3 + x4〉.
This ideal is given by r = 3 independent equations in n = 6 variables, and the
corresponding linear subspace L has dimension d = n − r = 3.

Consider the r × n matrix whose rows correspond to our 3 equations:

A =
⎡

⎣

1 1 0 0 0 1
0 1 −1 0 1 0
0 0 1 1 0 0

⎤

⎦ .

We regard the columns of A as a point configuration in P
r−1 = P

2, respectively, as
shown in Fig. 1. The affine dependence relations among the points correspond to the
linear dependence relations among the columns of the matrix. A different generating
set for I would give a different point configuration with the same affine dependence
relations.

It is known [34, Prop. 1.6] that the minimal universal Gröbner basis of I is given by
the cocircuits of I : the linear forms in L using an inclusion-minimal set of variables.

I = 〈x1 + x2 + x6, x1 + x3 − x5 + x6, x1 − x4 − x5 + x6,

x2 − x3 + x5, x2 + x4 + x5, x3 + x4〉.

Fig. 1 A point configuration
A ⊂ P

2 corresponding to the
linear ideal I

16 
2 

5 4 3 
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We identify the cocircuits with their support sets

D = {126, 1356, 1456, 235, 245, 34}.

They are the complements of the hyperplanes 345, 24, 23, 146, 136, and 1256 spanned
by subsets of A. Theorem 1.3 (a,b) says that the homogenized cocircuits minimally
generate ˜I and give a universal Gröbner basis:

˜I = 〈x1y2y6 + y1x2y6 + y1y2x6, x1y3y5y6 + y1x3y5y6 − y1y3x5y6
+ y1y3y5x6, . . . , x3y4 + y3x4〉.

The bases of A are the maximal independent sets of A; they correspond to the
nonzero maximal minors of A and hence to the nonzero Plücker coordinates of L . In
Fig. 1, they correspond to triples of noncollinear points. The 13 bases of A are

B = {123, 124, 134, 135, 145, 234, 235, 236, 245, 246, 346, 356, 456}.

Theorem 1.3 (c) then states that the multidegree of ˜L is

mdeg ˜L = t1t2t3 + t1t2t4 + t1t3t4 + · · · + t4t5t6.

The f -vector f = (1, 6, 14, 13) counts the number fi of independent sets of size
i for i = 1, . . . , r . The h-polynomial is h0xr + h1xr−1 + · · · + hr x0 = f0(x − 1)r +
f1(x − 1)r−1 + · · · + fr (x − 1)0; in this case, it equals x3 + 3x2 + 5x + 4. Thus,
Theorem 1.3 (d) predicts that

bideg ˜L = s3 + 3s2t + 5st2 + 4t3.

Theorem 1.3 (e) says that I (˜L) has at most (6 − 3)! · 13 = 78 initial ideals. Using
the software Gfan [18], one can check that it actually has 72 initial ideals.

Theorem1.3 (f) tells us the primarydecompositionof the initial ideal I< = in< I (˜L)

with respect to any linear order <. If x1/y1 > · · · > x6/y6, which leads to the natural
order 1 < 2 < · · · < 6 on the elements of the matroid, we get

I< = 〈x1y2y6, x1y3y5y6, x1y4y5y6, x2y3y5, x2y4y5, x3y4〉
= 〈x1, x2, x3〉 ∩ 〈x1, x2, y4〉 ∩ 〈x1, y3, y4〉 ∩ 〈x1, x3, y5〉 ∩ 〈x1, y4, y5〉 ∩

〈y2, y3, y4〉 ∩ 〈y2, x3, y5〉 ∩ 〈x2, x3, y6〉 ∩ 〈y2, y4, y5〉 ∩ 〈x2, y4, y6〉 ∩
〈y3, y4, y6〉 ∩ 〈x3, y5, y6〉 ∩ 〈y4, y5, y6〉.

We have a primary component 〈zb : b ∈ B〉 for each basis B, where zb equals xb or yb

depending on whether b is internally active or passive in B. For each b ∈ B consider
the cocircuit D(B, b), which consists of the points not on the hyperplane spanned by
B − b. If b is the smallest element of D(B, b), then b is said to be active in B, and
zb = xb. Otherwise, b is passive in B and zb = yb.
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Fig. 2 The Möbius function μ(F,̂1) of the lattice of flats of M encodes the nonzero multigraded Betti
numbers of I (˜L)

For example, the basis 235 contributes the primary component 〈y2, x3, y5〉 because
2 is internally passive (2 is not the smallest element in D(235, 2) = 126), 3 is internally
active (3 is smallest in D(235, 3) = 34), and 5 is internally passive (5 is not smallest
in D(235, 5) = 1456).

Note that, from the primary decomposition of I< above, we can read off the mul-
tidegree and bidegree immediately. Each component contributes a monomial, where
terms xi and yi , respectively, contribute factors of s and t to the bidegree, and a factor
of ti to the multidegree. Therefore, if one is able to compute this primary decomposi-
tion, one immediately gets the list of bases and the h-polynomial of the matroid. From
this point of view, it is surprising that when we choose different orders < we get the
same bidegree.

Theorem 1.5 is best understood pictorially. The flats of M are the affine subspaces
spanned by the points in A. They are partially ordered by inclusion. Recursively define
the numbers μ(F,̂1) by μ(̂1,̂1) = 1 and μ(F,̂1) = −∑

G>F μ(G,̂1) for G �= ̂1,
wherê1 is the maximal flat. These numbers are shown circled in Fig. 2, and they give
the nonzero multigraded Betti numbers of S/I :
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β0,∅ = 1

β1,34 = β1,245 = β1,235 = β1,1456 = β1,1356 = β1,126 = 1

β2,2345 = β2,13456 = β2,12456 = β2,12356 = 2, β2,12346 = 1

β3,123456 = 4

From this, we can immediately read off the Betti numbers

β0 = 1, β1 = 6, β2 = 9, β3 = 4

of S/I , as well as the standard Z-graded Betti table of S/I , whose (i, j) entry is
βi,i+ j = ∑

|a|=i+ j
βi,a:

I 1 6 9 4
1 − − −
− 1 − −
− 3 2 −
− 2 7 4

In view of Theorem 1.3 (b), the equality for i = 1 in Theorem 1.5 follows from the
fact that I (˜L) is robust; that is, it is minimally generated by a universal Gröbner basis.
For example, the Betti number β1,34 = 1 corresponds to the generator x3y4 + y3x4 of
˜I .

All of these results have generalizations to affine subspaces of A
n . We delay the

precise statements and proofs until Sect. 7.

1.3 Our results on matroids

Our analysis of the closure ˜L of a linear space L ⊂ A
n in (P1)n gives rise to some

constructions and results in matroid theory of independent interest.
Fix a basis e1, . . . , en of R

n and let � = conv{e1, . . . , en} be the standard simplex
in R

n . For each subset S ⊆ [n], consider the indicator vector eS = ∑

s∈S es and the
face �S = conv{es : s ∈ S} of �. For a matroid M on [n], consider the cocircuit
polytope

OM =
∑

D cocircuit of M

�D,

where the Minkowski sum of P, Q ⊂ R
n is P + Q := {p + q : p ∈ P, q ∈ Q}.

Theorem 1.8 If a matroid M on [n] has rank r , then the cocircuit polytope OM

(a) is given by the equation
∑n

i=1 xi = D([n]) and the inequalities
∑

i∈S xi ≤
D(S) for S ⊆ [n], where D(S) is the number of cocircuits intersecting S,

(b) has dimension n − c where c is the number of connected components of M,
(c) has the matroid polytope PM = conv{eB : B basis} as a Minkowski summand,
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(d) has at most r ! · b vertices, where b is the number of bases.

We are also led to the study of an interesting simplicial complex, which we call
the external activity complex. Let M be a matroid and let < be a linear order on the
ground set S. Consider the 2|E |-element set {xe, ye : e ∈ E}, and identify subsets
and monomials, and write

xA yB := {xa : a ∈ A} ∪ {yb : b ∈ B}.

Every basis B of M gives rise to a partition of [n] − B into the sets E A<(B) and
E P<(B) of externally active and passive elements. These sets, which will be defined
in Sect. 2, are similar and related to the sets I A<(B) and I P<(B) of Theorem 1.3 (e).

Theorem 1.9 Let M be a matroid and < a linear order on its ground set. There
is a simplicial complex Act<(M) on {xe, ye : e ∈ E}, called the external activity
complex, such that

1. The minimal nonfaces are xminC yC−minC for each circuit C.
2. The facets of Act<(M) are the sets xB∪E P(B)yB∪E A(B) for each basis B.

1.4 Motivation and related results

The closures we study are similar to the reciprocal varieties of linear spaces consid-
ered in [31]. A reciprocal variety may be thought of as the closure arising from the
homogenization xi �→ 1/yi . Proudfoot and Speyer proved that the reciprocal variety
L⊥ of a linear space has a universal Gröbner basis defined by circuit polynomials.
They also proved that its degree can be computed in terms of the Tutte polynomial
evaluated at (1, 0). In one sense, our results can be viewed as a proper homogeniza-
tion of the reciprocal variety. Indeed, upon setting xi = 1, we obtain precisely the
equations obtained in [31]. Upon substitution, the minimality of the generators is not
preserved, nor is the property that all monomial degenerations have the same Betti
numbers. The bidegree of I (˜L) is a homogenized h-polynomial whereas the degree of
the reciprocal variety is equal to the constant term h(0). Thus, it seems that the added
homogeneity enjoyed by the closure in (P1)n captures more of the matroid structure.

Weoriginally became interested in closures of linear spaces because of this universal
Gröbner basis property and a well-known result for toric ideals: If X is any affine toric
variety, then its closure ˜X in (P1)n is called the Lawrence lifting of X . If X is toric,
then I (˜X) is minimally generated by a universal Gröbner basis (see [34]). In general,
we wanted an answer to the following question

Question 1.10 If X ⊂ A
n is a variety, and I (˜X) is the ideal of its closure in (P1)n,

when does

βi (S/I (˜X)) = βi (S/ in< I (˜X)) for all <?

Sturmfels’ result says that equality holds if X is defined by a toric ideal and i = 1,
and our result says that if L is a linear space then equality holds for all i .
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Originally, we hoped that such a result might hold more generally, but little is true.
Even for toric ideals, the question has a negative answer if i ≥ 2 and the following
example shows that even for i = 1 the situation is quite subtle. This example also
illustrates that, contrary to the case of closures in P

n , there is no simple numerical
relationship between the number of generators of I (X) and I (˜X), even in terms of
Gröbner bases.

Example 1.11 Let I = I (X) = (x1 + x2 + x3, x1 + x3 + x4, x21 + x22 + x1x4)

I (X) I (˜X)
Number of generators 3 12

Size of a reduced Gröbner basis 3 14 or 15
Size of a universal Gröbner basis 8 21

The closures we study also arise in work of Aholt, Sturmfels, and Thomas [4] where
they study maps induced by products of linear projections V → V/Vi when dim V =
4. Recently, Li has extended the results of [4] to arbitrary vector spaces. In [22], he
computes the defining ideal and multidegree for the closure of the image of such maps
and proves that they are determined combinatorially.

Ideals minimally generated by universal Gröbner bases, called robust ideals in
[8], are by no means a common occurrence. Even in the toric case, this condition is
very strong, yet a complete classification is unknown. Nonetheless, robust ideals have
cropped up in many classical situations (see [5,7,8,11,12,31,32,35,36]).

2 Preliminaries from matroid theory

The toolkit of matroid theory is ideally suited to study the geometric and algebraic
invariants in this project. Matroid theory can be approached from many equivalent
points of view, and this project illustrates this point very well; many different matroid
theoretic concepts appear naturally, asExample 1.7 shows. In this section,we introduce
these concepts in more detail; they will play a fundamental role in what follows. For
a more thorough introduction, see [6,27]. Readers familiar with matroid theory can
probably skip this section and refer to it as necessary.

2.1 One definition of a matroid

Definition 2.1 A matroid M = (E, I) consists of a ground set E and a family I of
subsets of E , called the independent sets of M , which satisfy the following axioms:

(I1) The empty set is independent.
(I2) A subset of an independent set is independent.
(I3) If X and Y are independent and |X | < |Y |, then there exists y ∈ Y − X such that

X ∪ y is independent.

Matroid theory can be thought of as a combinatorial theory of independence. The
prototypical example is the family of linear or realizable matroids, which arise from
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linear independence. If E is a set of vectors in a vector space V , then the linearly
independent subsets of E form a matroid.

In a matroid M , a circuit is a minimal dependent set. A basis is a maximal inde-
pendent set. All bases of M have the same size, which is called the rank r(M) of
M . Similarly, all maximal independent subsets of any set S ⊆ E have the same size,
which is called the rank r(S). There are equivalent definitions of matroids in terms of
circuits, bases, and rank functions, among others.

In our running Example 1.7, the bases and circuits are:

B = {123, 124, 134, 135, 145, 234, 235, 236, 245, 246, 346, 356, 456},
C = {16, 125, 256, 345, 1234, 2346}.

The independent sets are the subsets of the bases.

2.2 The f -vector, h-vector, and Tutte polynomial

The f -vector fM = ( f0, . . . , fr ) of amatroid M records the number fi of independent
sets of size i for 0 ≤ i ≤ r . This information is equivalently recorded in the h-
polynomial

hM (x) = h0xr + h1xr−1 + · · · + hr x0 = f0(x − 1)r + f1(x − 1)r−1

+ · · · + fr (x − 1)0.

The reverse polynomial hr xr + · · · + h0 is known as the shelling polynomial of M .2

The vector hM = (h0, . . . , hr ) is called the h-vector of M .
In our running Example 1.7, we already saw that there are 13 bases. All sets of sizes

0, 1, and 2 are independent except for the pair 16, so the f -vector is (1, 6, 14, 13).
The h-polynomial is then

hM (x) = (x − 1)3 + 6(x − 1)2 + 14(x − 1) + 13 = x3 + 3x2 + 5x + 4.

The h-polynomial is an evaluation of the most important enumerative invariant of
a matroid, the Tutte polynomial:

TM (x, y) =
∑

A⊆E

(x − 1)r−r(A)(y − 1)|A|−r(A).

A straightforward computation shows that

hM (x) = TM (x, 1).

2 Different conventions are used by different authors, and sometimes the names of these two polynomials
are reversed. We follow [6].
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16 
2 

5 4 3 

5 
34 

2 1 6 
Fig. 3 The point configuration A ⊂ P

r−1 = P
2 and a dual configuration A∗ ⊂ P

n−r−1 = P
2

2.3 Duality and minors

If B is the collection of bases of a matroid M on E , then B∗ := {E − B : B ∈ B}
is also the collection of bases of a matroid, called the dual matroid M∗. If M is the
matroid of a set A of n vectors which generate kd , then one can find a set of n vectors
which generate kn−d whose matroid is M∗. Figure 3 shows a point configuration dual
to the one of Example 1.7. The reader may check that the bases of A∗ are precisely
the complements of the bases of A.

A circuit of M∗ is called a cocircuit of M . It can also be characterized as a minimal
set D whose removal decreases the rank of M ; i.e., r(E − D) < r . The cocircuits of
A in Example 1.7 are

D = {34, 126, 235, 245, 1356, 1456}.

They are the complements of the hyperplanes spanned by subsets of A. In A∗, they
are the circuits.

The following technical lemma will be very useful to us.

Lemma 2.2 [27] If C is a circuit and D is a cocircuit of M, then |C ∩ D| �= 1.

If M is a matroid on E and A ⊂ E , then there are matroids M\A = M |E−A and
M/A on E − A, called the deletion and contraction of A in M , whose independent
sets are

I(M\A) = {I ∈ I(M) : I ⊆ E − A}
I(M/A) = {I − BA : I ∈ I(M), BA ⊆ I }

where BA is a basis of A. Any sequence of deletions and contractions commutes. A
minor of M is any matroid obtained from M by deletions and contractions.

Deletion and contraction are dual operations:

(M/A)∗ = M∗\A.

If M comes from a set S of vectors in a vector space V , then M\A corresponds to
deleting the vectors in A, while M/A corresponds to the images of those vectors in
V/span(A).
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2.4 The matroid of a linear ideal

Fix a choice of a standard basis for kn . Let L be an r -dimensional linear subspace of
kn and let I (L) ⊂ k[x1, . . . , xn] be its defining linear ideal. There is one particularly
useful generating set for I (L), whichwe now describe. For each linear form f in I (L),
consider its support supp( f ) ⊆ [n] consisting of those i such that xi has a nonzero
coefficient in f . Among these, consider the setD of inclusion-minimal supports; these
are called the cocircuits of I (L). They are the cocircuits of a matroid M(L), called
the matroid of L .3 Notice that for each cocircuit D there is a unique linear form f
(up to scalar multiplication) in I (L) with supp( f ) = D, so there is no ambiguity in
calling this form f a cocircuit as well.

Proposition 2.3 [34, Prop. 1.6]The cocircuits of the linear ideal I (L) form a universal
Gröbner basis for I (L).

Linear matroids are precisely the matroids of linear ideals. As we explained in
Example 1.7, if B is a matrix whose rows generate I (L), one may easily check that
the linear matroid on the columns of B equals the matroid of L .

Matroid duality can then be seen as a generalization of duality of subspaces. Our
chosen basis for kn determines a dual basis for the dual vector space (kn)∗. If L⊥ ⊂
(kn)∗ is the orthogonal complement of our vector space L , then the matroid of L⊥ is
dual to the matroid of L .

2.5 Basis activities

Proposition 2.4 [13] Given a basis B and an element x /∈ B, there is a unique circuit
C = C(B, x) contained in B ∪ x. It is called the fundamental circuit of B and x, and
is given by:

C(B, x) = {y ∈ E : (B ∪ x) − y is a basis}.

Notice that x ∈ C(B, x).
Given a basis B and an element y ∈ B, there is a unique cocircuit D = D(B, y)

contained in (E − B) ∪ y. It is called the fundamental cocircuit of B and y, and is
given by:

D(B, y) = {x ∈ E : (B − y) ∪ x is a basis}

Notice that y ∈ D(B, y).

Consider a linear order < on the ground set of M . Let B be a basis of M . We say
that an element e /∈ B is externally active if it is the smallest element in C(B, e), and
it is externally passive otherwise. Let E A<(B) and E P<(B) be the sets of externally
active and externally passive elements with respect to B and <.4

3 Sometimes the dual convention is chosen, and the matroid of L is defined to be the dual matroid M(L)∗.
4 When the choice of the order < is clear, we will omit the subscript and write simply E A(B) and E P(B).
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Similarly, we say that an element i ∈ B is internally active if it is the small-
est element in D(B, i), and it is internally passive otherwise. We write I A<(B)

and I P<(B) for the sets of internally active and internally passive elements with
respect to B and <. Notice that matroid duality reverses internal and external activity:
I AM,<(B) = E AM∗,<([n] − B) and I PM,<(B) = E PM∗,<([n] − B).

We will need the following result by Crapo:

Theorem 2.5 [13] Let M be a matroid on the ground set E and let < be a linear order
on E. Every subset A of E can be uniquely written in the form A = B ∪ F − J for
some basis B, some subset F ⊆ E A(B), and some subset J ⊆ I A(B). Equivalently,
the intervals [B − I A(B), B ∪ E A(B)] form a partition of the poset 2E of subsets of
E ordered by inclusion.

This can be used to prove:

Theorem 2.6 [13] Let M be a matroid on the ground set E and let < be a linear order
on E. Then, the Tutte polynomial and h-polynomial of M are given by

TM (x, y) =
∑

B basis

x |I A<(B)|y|E A<(B)|, hM (x) =
∑

B basis

x |I A<(B)|.

This beautiful result implies, in particular, the nontrivial fact that the right-hand
side of each equation does not depend on the chosen linear order.

2.6 Lattice of flats and Möbius function

A flat F of a matroid M is a subset which is maximal for its rank; that is, a set such
that r(F ∪ f ) = r(F)+1 for all f /∈ F . The flats of rank r −1 are called hyperplanes.
In the case that interests us, when M is the linear matroid of a set of vectors E ⊂ kn ,
the flats of M correspond to the subspaces spanned by subsets of E . The lattice of flats
L M is the poset of flats ordered by containment; it is in fact a lattice, graded by rank.
The set of flats in Example 1.7 is

L M = {∅, 16, 2, 3, 4, 5, 1256, 136, 146, 23, 24, 345, 123456},

as illustrated in Fig. 2.
The Möbius function of L M is the map μ : I nt (L M ) → Z from the intervals of

L M to Z characterized by μ(x, x) = 1 for all x ∈ L M and
∑

x≤z≤y μ(z, y) = 0 for

all x < y.5 The Möbius number of M is μ(M) = μ(̂0,̂1), where ̂0 and ̂1 are the
minimum and maximum elements of L M . Figure 2 shows the value of μ(F,̂1) next
to each flat F of M .

5 It ismore common to demand that
∑

x≤z≤y μ(x, z) = 0 for all x < y; these two conditions are equivalent.
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2.7 Independence complexes and cocircuit ideals

To a matroid M on the ground set E , one associates a simplicial complex

I N (M) = {I ⊆ E : I is independent in M}

called the independence complex of M . For us, the independence complex of the dual
matroid M∗ is more relevant. These complexes have very simple topology:

Theorem 2.7 [6, Theorem 7.8.1] If M is a matroid of rank r on [n], then

Hi (I N (M∗); Z) =
{

Z
|μ(M)|, if i = n − r − 1 and M has no loops

0, otherwise.
.

Recall that the Stanley–Reisner ideal of a simplicial complex� on a set {x1, . . . , xn}
is the ideal

I� = 〈xi1xi2 · · · xik : {i1, . . . , ik} is not a face of �〉 ⊂ k[x1, . . . , xn].

TheStanley–Reisner ring isk[x1, . . . , xn]/I�. Since theminimal nonfaces of I N (M∗)
are the circuits of M∗, which are the cocircuits of M , the Stanley–Reisner ideal of
I N (M∗) is the cocircuit ideal

II N (M∗) =
〈

∏

c∈C

xc : C is a cocircuit of M

〉

.

The components of the primary decomposition of a squarefree monomial ideal I� are
in bijection with the facets of �; each facet F corresponds to the primary component
〈x f : f /∈ F〉 [26, Theorem 1.7]. Since the facets of I N (M∗) are the bases of M∗,
we get that the primary decomposition of II N (M∗) is

II N (M∗) =
⋂

B basis

〈xb : b ∈ B〉.

In our running Example 1.7, we have

II N (M∗) = 〈x1x2x6, x2x3x5, x2x4x5, x3x4, x1x3x5x6, x1x4x5x6〉
= 〈x1, x2, x3〉 ∩ 〈x1, x2, x4〉 ∩ 〈x1, x3, x4〉 ∩ 〈x1, x3, x5〉 ∩ 〈x1, x4, x5〉 ∩

〈x2, x3, x4〉 ∩ 〈x2, x3, x5〉 ∩ 〈x2, x3, x6〉 ∩ 〈x2, x4, x5〉 ∩ 〈x2, x4, x6〉 ∩
〈x3, x4, x6〉 ∩ 〈x3, x5, x6〉 ∩ 〈x4, x5, x6〉.

Now we recall Hochster’s formula for the Betti numbers of a squarefree monomial
ideal:
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Theorem 2.8 [26, Corollary 5.12] The nonzero Betti numbers of the Stanley–Reisner
ring I� lie only in squarefree degrees σ , and

βi−1,σ (I�) = dimk ˜H |σ |−i−1(�|σ ).

Let us apply this formula to� = I N (M∗) andσ = E−A for a subset A ⊂ E .We have
that �|E−A = I N (M∗|E−A) = I N (M∗\A). Notice that (M∗\A)∗ = M/A has no
loops if and only if A is a flat of M . Also r(M/A) = r −r(A) andμ(M/A) = μ(A,̂1).
Combining these observations with Theorem 2.7, we obtain the following result.

Theorem 2.9 The only nonzero Betti numbers of the cocircuit ideal II N (M∗) of M are

βr−r(A)−1,eE−A (II N (M∗)) = |μ(A,̂1)|

for the flats A of M.

3 Preliminaries from commutative algebra

In this section, we briefly review relevant definitions and results from combinatorial
commutative algebra. We refer the reader to [17,26] for a thorough treatment of all of
these topics. Readers familiar with commutative algebra can probably skip this section
and refer to it as needed.

3.1 Free resolutions and Betti numbers

Recall that S = k[x1, . . . , xn]. Let M be a graded S-module. One important invariant
of M is its minimal free resolution, which is an exact sequence of maps of S-modules

0 �� Fd
φd �� Fd−1

φd−1 �� · · · φ1 �� F0
φ0 �� M �� 0

where the Fi are free modules chosen to have rank as small as possible. Such a
resolution is unique up to isomorphism, and the maps can be chosen so that they are
homogeneous with respect to the grading. Each Fi is a direct sum

Fi =
⊕

a

S(−a)βi,a

where S(−a) denotes the free module whose generator lies in degree a. The ranks
of these graded pieces are defined to be the graded Betti numbers βi,a and can be
computed as dimensions of the graded components of Tor modules according to the
formula

βi,a(M) = dimk(Tor
S
i (M,k))a.
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The modules Fi in the minimal free resolution are collectively called syzygies and
encode algebraic relations among the generators of M . In what follows, we assume
that M = S/I for a homogeneous ideal I .

Example 3.1 With this notation, the ideal˜I in Example 1.7 hasminimal free resolution

0 �� S(−123456)4 ��

S(−12346)
⊕

S(−2345)2

⊕
S(−13456)2

⊕
S(−12456)2

⊕
S(−12356)2

��

S(−126)
⊕

S(−34)
⊕

S(−1356)
⊕

S(−1456)
⊕

S(−235)
⊕

S(−245)

�� S �� S/˜I �� 0 ,

where we denote, for example, the degree (1, 1, 0, 0, 0, 1) as 126 to save space. We
have β1,34 = 1 because ˜I has one generator in degree 34, namely the homogenized
cocircuit x3y4+y3x4.We have β2,2345 = 2 because there are two independent S-linear
relations (syzygies) in degree 2345 among the six generators of ˜I , namely:

y2y5(x3y4 + y3x4) + y4(x2y3y5 − y2x3y5 + y2y3x5)

−y3(x2y4y5 + y2x4y5 + y2y4x5) = 0,

(x2y5 + y2x5)(x3y4 + y3x4) − x4(x2y3y5 − y2x3y5 + y2y3x5)

−x3(x2y4y5 + y2x4y5 + y2y4x5) = 0.

A monomial term order < on the polynomial ring S is a total order on the set of
monomials that is respected by multiplication. For each polynomial f , the term order
determines a leading term in< f which is the largest term with respect to <. For an
ideal I ⊂ S, we define the initial ideal with respect to < to be the ideal generated by
the leading terms of all polynomials in I :

in< I = (in< f | f ∈ I ) .

Initial ideals can be thought of as flat degenerations (see [15, Theorem 15.17]), and
as such, the Hilbert function of an ideal is equal to that of its initial ideal. By contrast,
Betti numbers may change, but they obey the following inequality:

βi,a(S/I ) ≤ βi,a(S/ in< I ).

The upshot, however, is that if this inequality is strict, then the extra free modules
appearing in the minimal free resolution of S/ in< I must occur in pairs; the modules
in each pair occur in neighboring homological degrees and have the same generating
degree. Such a pair is known as a consecutive cancelation, because in the resolution
of S/I , these modules cancel out (see [28] and [26, Remark 8.30]).
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Example 3.2 If J = 〈x2, xy + y2〉 ⊂ k[x, y] then under the term order determined
by x > y,

in<(J ) = 〈x2, xy, y3〉.

Under the usual Z-grading, the ideals J and in< J have minimal free resolutions

0 �� S(−4)1

(

xy + y2

−x2

)

�� S(−2)2

(

x2 xy + y2
)

�� S �� S/J �� 0

and

0 ��
S(−3)1

⊕
S(−4)1

⎛

⎜

⎜

⎝

y 0
−x y2

0 −x

⎞

⎟

⎟

⎠

��
S(−2)2

⊕
S(−3)1

(

x2 xy y3
)

�� S �� S/ in< J �� 0 .

The consecutive pair of two copies of S(−3)1 is a consecutive cancelation.

3.2 Degree and multidegree

If X ⊂ P
n is a projective variety over an algebraically closed field, then the degree of

X is defined to be the number of intersection points of X with a linear subspace L in
general position where dim X + dim L = n. Since we work in a product of projective
spaces, we will consider a finer invariant, called the multidegree. In a product of
projective spaces, the multidegree captures the number of points of intersection of X
with general collections of linear spaces in the different coordinate subspaces. It is
convenient to encode these numbers as the coefficients of a polynomial. We define
multidegree geometrically for varieties inside of (P1)n and refer the reader to [26] for
the more general case, as well as an algebraic definition in terms of free resolutions.
Finally, we note the multidegree of X is simply the class of X in the equivariant Chow
ring of (P1)n . However, since all the intersections are transverse in our case of interest,
we have chosen to present a more classical definition.

Let d = dim X and r = n −d = codim X . For each r -subset� ⊂ [n], consider the
linear subspace Z� ⊂ (P1)n = ∏n

i=1(P
1)i (where we give subindices to the various

P
1s to distinguish them) given by

Z� =
∏

i∈�

(P1)i ×
∏

i /∈�

qi ,

where qi ∈ (P1)i is a general point. If X is a subvariety (or subscheme) of (P1)n of
codimension r then denote by m(Z�, X) the intersection multiplicity of X with Z�.
By the genericity of Z� this will simply be the number of points in the intersection
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counted with multiplicity. Then the multidegree of X is defined to be the polynomial

mdeg X =
∑

�∈([n]
r )

m(Z�, X) ti1 · · · tir ,

where � = {i1, . . . , ir } ranges over all r -subsets of [n].
By definition, the multidegree can only detect information about the highest dimen-

sional components of X . The next result follows easily from the relevant definitions
and Bezout’s theorem.

Proposition 3.3 Let I ⊂ k[x1, . . . , xn, y1, . . . , yn] be an ideal defining a subscheme
X in (P1)n. If X has irreducible components of maximal dimension {X1, . . . , Xk},
then

mdeg X =
k

∑

i=1

mdeg Xi .

If X is defined by a monomial ideal I = (za1
1 , . . . , zac

c ) where zi is either xi or yi and
ai ∈ N for each 1 ≤ i ≤ c, then

mdeg X = (a1 · · · ac) t1 · · · tc.

4 The cocircuit polytope

Our work gives rise to an interesting polytope OM associated with a matroid M , which
we call the cocircuit polytope. As we will see in the proof of Theorem 1.3 (e), when
M is the matroid of a linear space L , the polytope OM is affinely isomorphic to the
state polytope of the ideal I (˜L).

Let � = conv{e1, . . . , en} be the standard simplex in R
n , and for each I ⊆ [n] let

�I = conv{ei : i ∈ I }.

For amatroid M on the ground set [n], let the cocircuit polytope OM be theMinkowski
sum

OM =
∑

D cocircuit of M

�D,

where the Minkowski sum of P, Q ⊂ R
n is P + Q := {p + q : p ∈ P, q ∈ Q}.

We will see that these polytopes OM are related to matroid (basis) polytopes, which
are much better known and understood (see, e.g., [14,16]). The vertices of the matroid
polytope PM of M are the vectors eB = eb1 +· · ·+ebr for each basis B = {b1, . . . , br }
of M . The connected components of M are the equivalence classes for the equivalence
relation where a ∼ b if a, b ∈ C for some circuit C . It is known that dim PM = n − c
where c is the number of connected components of M .
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+ + I 
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Fig. 4 Building up the Minkowski sum �134 + �234 + �12 = OM and the signed Minkowski sum
�134 + �234 + �12 − �1234 = PM one step at a time

Figure 4 illustrates these polytopes for the matroid M with bases 12, 13, 14, 23,
and 24. The top left panel shows the standard simplex as a frame of reference. The
figure builds up the Minkowski sum OM = �134 + �234 + �12 one step at a time. It
then subtracts the simplex �1234 to obtain the signed Minkowski sum PM = �134 +
�234 + �12 − �1234, which is the matroid polytope PM as shown in [2].

Theorem 1.8 If a matroid M on [n] has rank r , then the cocircuit polytope OM

(a) is given by the equation
∑n

i=1 xi = D([n]) and the inequalities
∑

i∈S xi ≤
D(S) for S ⊆ [n], where D(S) is the number of cocircuits intersecting S,

(b) has dimension n − c where c is the number of connected components of M,
(c) has the matroid polytope PM = conv{eB : B basis} as a Minkowski summand,
(d) has at most r ! · b vertices, where b is the number of bases.

Beforeweprove this theorem, it is useful to recall somebasic facts about generalized
permutahedra [29]. The permutahedron �n is the convex hull of the n! permutations
of {1, . . . , n} inR

n ; its normal fan is the braid arrangement formed by the hyperplanes
xi = x j for i �= j . A generalized permutahedron is a polytope P obtained from �n

by moving the vertices (possibly identifying some of them) while preserving the edge
directions. This is equivalent to requiring that the normal fan of P is a coarsening of
the braid arrangement [30].

Every generalized permutahedron can be written uniquely in the form

Pn({zI }) = {(t1, . . . , tn) ∈ R
n :

n
∑

i=1

ti = z[n],
∑

i∈I

ti ≤ zI for all I ⊆ [n]}

where for each ∅ � I ⊆ [n] we let zI be the minimum real number satisfying
the corresponding inequality, and z∅ = 0. The vector (zI )I⊆[n] is submodular; that
is, zI + z J ≥ zI∪J + zI∩J for all subsets I and J of [n]. Furthermore, this is a
bijection between generalized permutahedra and points in the submodular cone in
R
2n

defined by the submodular inequalities [1,25,29,33]. This shows that generalized
permutahedra are essentially the same as polymatroids, which predate them.

There is an alternative description of generalized permutahedra. Every Minkowski
sum of simplices of the form �I is a generalized permutahedron [29], and conversely,
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every generalized permutahedron can be expressed as a signed sum of such simplices
[2]. This automatically implies that OM is a generalized permutahedron. Also, PM

is the generalized permutahedron Pn(r(I ))I⊂[n] where r(I ) is the rank of I in the
matroid M [2,33].

Proof of Theorem 1.8 For a polytope P ∈ R
n and a linear functional w ∈ (Rn)∗, let

Pw be the face of P minimized by w.
(a) Since OM is a generalized permutahedron, we have OM = Pn(zI ) for some vector
zI . Notice that �D = Pn(zD

I ) where zD
I is 1 if I ∩ D �= ∅ and 0 otherwise. Then, the

result follows from the fact that Pn({zI }) + Pn({z′
I }) = Pn({zI + z′

I }).
(b) From the Minkowski sum expression for OM , it is clear that the edge directions of
OM are precisely the edge directions of the various �D . These are the vectors of the
form ec − ed where c and d are in the same cocircuit; that is, in the same connected
component of M∗. Their span is the subspace given by the equations

∑

i∈Ka
xi =

0 for the connected components K1, . . . , Kc of M∗, which are also the connected
components of M . The result follows.
(c) When M is the matroid of a linear ideal I , this claim is related to (but not implied
by) Proposition 2.3 and the fact that the matroid polytope is a state polytope of I [34,
Proposition 2.11]. We proceed as follows.

We know that OM = Pn({D(I )}) and PM = Pn({r(I )}), where r is the rank
function of M .We claim that q(I ) = D(I )−r(I ) is a submodular function; it will then
follow that Q = Pn({q(I )}) is a generalized permutahedron such that OM = PM + Q.

Let δq(S, a, b) = −q(S ∪ a ∪ b) + q(S ∪ a) + q(S ∪ b) − q(S) for S ⊂ [n]
and a, b ∈ [n] − S; define δD and δr analogously. We will prove that δq is always
nonnegative; this property of “local submodularity” of q(I ) implies its submodularity.

Assume contrariwise that δq(S, a, b) < 0. Notice that δD and δr are nonnegative
because D and r are submodular, and δr equals 0 or 1 because r(S∪s)−r(S) = 0 or 1
for s /∈ S. Therefore, to have δq(S, a, b) = δD(S, a, b) − δr (S, a, b) < 0, we must
have

δD(S, a, b) = 0, δr (S, a, b) = 1. (1)

To have δr (S, a, b) = 1, we must have, for some s,

r(S) = s, r(S ∪ a) = r(S ∪ b) = r(S ∪ a ∪ b) = s + 1. (2)

One easily checks that δD(S, a, b) = 0 is the number of cocircuits containing a
and b and not intersecting S. Since hyperplanes are the complements of cocircuits,
it follows that every hyperplane H ⊃ S must contain either a or b. If a hyperplane
H ⊃ S contained one and not the other, say a ∈ H and b /∈ H , submodularity would
imply

1 = r(H ∪ b) − r(H) ≤ r(S ∪ a ∪ b) − r(S ∪ a) = 0

by (2) and the fact that H is a hyperplane. Therefore, every hyperplane H ⊃ S must
contain both a and b, so every hyperplane of M/S contains both a and b. This is only
possible if a and b have rank 0 in M/S, which contradicts that r(S ∪ a) = r(S) + 1.
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(d) Since the normal fan of OM coarsens the braid arrangement, {(OM )π :
π is a permutation of [n]} is a complete list of the vertices of OM , possibly with rep-
etitions. The π -minimal vertex is

(OM )π =
∑

D cocircuit of M

(�D)π =
∑

D cocircuit of M

eminπ (D) = (dπ
1 , . . . , dπ

n )

where dπ
i is the number of cocircuits of M whose π -smallest element is i .

Next we observe that the support of any vertex (OM )π of OM is a basis of M ; more
specifically,

supp(OM )π = Bπ (3)

where B = Bπ denotes the π -minimal basis of M , which minimizes
∑

b∈B π(b).
This basis is unique by the greedy algorithm for matroids. The claim (3) follows from
the following variant of the greedy algorithm for matroids due to Tarjan called the
blue rule [20, Theorem 2.7]. To construct the π -minimum basis Bπ , we start with all
elements of [n] uncolored. We successively choose a cocircuit with no blue elements,
and color its smallest element blue. We do this repeatedly, in any order, until it is no
longer possible. In the end, the set of blue elements is the basis Bπ . Clearly, the blue
elements are precisely those i such that dπ

i �= 0.
Finally, it remains to observe that for each π , the vertex (OM )π is determined

uniquely by M and the relative order of π(Bπ ). To see this, notice that dπ
i is the

number of cocircuits D of M such that π(i) is the smallest element of π(Bπ ∩ D).
This number only depends on the matroid M , the basis Bπ , and the relative order of
π(Bπ ). Since there are b choices for Bπ and r ! choices for the relative order of π(Bπ ),
the desired result follows. �	

5 External activity complexes and the primary decomposition

Let M be a matroid and let < be a linear order on the ground set E . We will build
a simplicial complex on the 2|E |-element set {xe, ye : e ∈ E} closely related to the
basis activities in M . Basis activities were originally defined by Tutte (for graphs)
and Crapo (for matroids) to give a combinatorial interpretation of the coefficients of
the Tutte polynomial, as described in Theorem 2.6 [13,37]. Their clever definition
manifests itself algebraically in a very natural way in our work, thanks to Theorem
1.3 (f) and the following result.

We identify subsets and monomials, and write, for A, B ⊆ E ,

xA yB := {xa : a ∈ A} ∪ {yb : b ∈ B}.

Theorem 5.1 Let M be a matroid on E and let < be a linear order on E. There is a
simplicial complexAct<(M) on {xe, ye : e ∈ E}, called the external activity complex
of M with respect to <, such that:

1. The facets of Act<(M) are the sets xB∪E P(B)yB∪E A(B) for each basis B, where
E P(B)and E A(B)are the sets of externally passive and externally active elements
with respect to B.
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2. The minimal nonfaces are xminC yC−minC for each circuit C.

Proof We need to prove that, for S, T ⊆ E

xS yT ⊆ xB∪E P(B)yB∪E A(B) for some basis B

if and only if

xS yT � xminC yC−minC for all circuits C.

First, we prove the forward direction. Assume, contrariwise, that xS yT ⊆
xB∪E P(B)yB∪E A(B) for some basis B and xS yT ⊇ xminC yC−minC for some circuit C .
Then

xminC yC−minC ⊆ xB∪E P(B)yB∪E A(B).

Let minC = c. Since c ∈ B ∪ E P(B), there are two cases:
If c ∈ B: Let D = D(B, c) be the fundamental cocircuit. Then, c ∈ C ∩ D and,

since |C ∩ D| �= 1, we can find another element d ∈ C ∩ D. Since d ∈ D(B, c), we
have c ∈ C(B, d), and c < d because c = minC , so d is not externally active in B.
Also, d ∈ D(B, c) implies that d /∈ B. Therefore, d /∈ B ∪ E A(B). This contradicts
that C − minC ⊆ B ∪ E A(B).

If c ∈ E P(B), we have c /∈ B. We can find an element d ∈ C(B, c) with d < c.
Now d ∈ C(B, c) implies c ∈ D(B, d) =: D, so c ∈ C ∩ D. Again, this means
we can find another e ∈ C ∩ D. Since e ∈ C and c = minC , we have c < e, and
therefore, d < e. Now, e ∈ D implies that e /∈ B. Also e ∈ D(B, d) implies that
d ∈ C(B, e), and d < e then implies that e /∈ E A(B). Therefore, e /∈ B ∪ E A(B).
Again, this contradicts that C − minC ⊆ B ∪ E A(B). This completes the proof of
the forward direction.

To prove the backward direction, assume that xS yT � xB∪E P(B)yB∪E A(B) for all
bases B. We need to show that xS yT ⊇ xminC yC−minC for some circuit C .

By Theorem 2.6, we can write T = B ∪ E − I for some basis B, some subset E ⊆
E A(B), and some subset I ⊆ I A(B). Then, T ⊆ B ∪ E A(B), so S � B ∪ E P(B).
Therefore, we can find s ∈ S with s /∈ B ∪ E P(B); that is, s ∈ E A(B).

Let C = C(B, s). We claim that xS yT ⊇ xminC yC−minC . Since s ∈ E A(B),
s = minC , so S ⊇ minC . It remains to show that T ⊇ C − minC . Assume,
contrariwise, that d ∈ C − minC but d /∈ T . Since d ∈ C − minC , d ∈ B. Since
d /∈ T = B ∪ E − I , this implies that d ∈ I , so d is internally active in B. Therefore, d
is the smallest element in D(B, d). But d ∈ C(B, s) implies that s ∈ D(B, d), which
implies that s > d. This contradicts that s = minC . The desired result follows. �	

Theorem 5.2 Let M be a matroid on E and let < be a linear order on E. The ideal

C(M,<) = 〈xc1 yc2 yc3 · · · yck : C = {c1, . . . , ck} is a circuit of M and c1 = min
<

C〉
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in k[xe, ye : e ∈ E] is the Stanley–Reisner ideal of the external activity complex
Act<(M). Its primary decomposition is

C(M,<) =
⋂

B basis of M

〈 xe : e ∈ E A<(B) , ye : e ∈ E P<(B)〉.

Proof ByTheorem5.1.2,C(M,<) is theStanley–Reisner ideal ofAct<(M). Theorem
5.1.1 and [26, Theorem 1.7] then imply the desired primary decomposition. �	

The external activity complex and the corresponding monomial ideal are closely
related to two important simplicial complexes from matroid theory. If we set yi = xi ,
we obtain the Stanley–Reisner ideal of the independence complex of M , whose facets
are the bases of M . If we set xi = 1, we get the Stanley–Reisner ideal of the broken
circuit complex of M , whose facets are the nbc-bases of M [6].

6 Proofs of our main theorems

Having built up the necessary combinatorial background, we now use algebraic and
geometric tools to complete the proof of our main theorems.

Theorem 1.3 Let L ⊂ A
n be a d-dimensional linear space and let ˜L ⊂ (P1)n be the

closure of L induced by the embedding A
n ⊂ (P1)n. Let M be the matroid of L; it has

rank r = n − d. Then:

(a) The homogenized cocircuits of I (L) minimally generate the ideal I (˜L).
(b) The homogenized cocircuits of I (L) form a universal Gröbner basis for I (˜L),

which is reduced under any term order.
(c) The Z

n-multidegree of ˜L is
∑

B
tb1 · · · tbr summing over all bases B = {b1, . . . , br }

of M.
(d) The bidegree of ˜L is tr hM (s/t) where hM is the h-polynomial of M.
(e) There are at most r ! · b distinct initial ideals of I (˜L), where b is the number of

bases of M.
(f) The initial ideal in< I (˜L) is the Stanley–Reisner ideal of the external activity

complex Act<(M∗) of the dual matroid M∗. Its primary decomposition is:

in< I (˜L) =
⋂

B basis

〈 xe : e ∈ I A<(B) , ye : e ∈ I P<(B)〉

where B = I A<(B) 	 I P<(B) is the partition of B into internally active and
passive elements with respect to <.

One of our goals is to show that the set G = { f h
C } of homogenized circuits is a

universal Gröbner basis (UGB), that is, a Gröbner basis for I (˜L) with respect to any
term order. One key tool is the following: If two ideals share the same codimension
and degree and one contains the other, then under suitably nice conditions we can say
they are equal.
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Proof of (c) We compute the multidegree of ˜L using a geometric argument, recalling
the discussion of Sect. 3.2. For each� = {i1, . . . , ir } ⊂ [n]we let Z� = ∏

i∈�(P1)i ×
∏

i /∈� qi , where qi is a generic point in (P1)i for each i /∈ �. Then, we have

mdeg ˜L =
∑

�∈([n]
r )

m(Z�, ˜L)ti1 · · · tir ,

where m(Z�, ˜L) is the number of points in Z� ∩˜L counted with multiplicity. We will
prove that

m(Z�, ˜L) =
{

1 if � is a basis of M , and

0 otherwise,

from which our formula for mdeg ˜L will follow.
First let � be a basis. Since the points qi in Z� are general, we may suppose that

yi �= 0 for i /∈ �. Now let i ∈ �. Since � is a basis, there is a cocircuit D containing
i whose support is contained in ([n]−�)∪ i ; in fact, this is the fundamental cocircuit
D(�, i). If yi were equal to zero, then the homogenized cocircuit equation f h

D = 0
would force xi = 0, which is impossible. Hence, all intersections must occur in the
affine patchwhere no coordinate yi equals zero; but thenwe are working in the original
affine space, so it is clear that Z� ∩˜L = Z� ∩ L is a single point with no multiplicity.
Therefore, m(Z�, ˜L) = 1.

On the other hand, if � = {i1, . . . , ir } is not a basis, then there is a cocircuit D
which is disjoint from �. This means that Z� does not meet the hypersurface defined
by the homogenized cocircuit f h

D . Hence, ˜L does not meet Z� and m(Z�, ˜L) = 0.
The desired result follows. �	
Proof of (b) Let G = { f h

D : D cocircuit of M} ⊂ I (˜L) denote the set of homoge-
nized cocircuits. Let< be any monomial term order on k[x1, . . . , xn, y1, . . . , yn], and
let in< G denote the ideal generated by the leading terms of the polynomials in G. We
need to show that in< G = in< I (˜L). We begin with a remark:

Remark 6.1 If< is anymonomial term order, it is sufficient for Gröbner computations
to assume that< is givenby aweight orderw on the 2n variables x1, . . . , xn, y1, . . . , yn

[34, Prop. 1.11]. Since all of the polynomials in I (˜L) are multihomogeneous, the term
order w′ given by

w′(xi ) = w(xi ) − w(yi )

w′(yi ) = 0

will pick out the same initial terms on I (˜L) as w. Thus, we may assume that the
weights on the y variables are all zero. The resulting linear order on 1, . . . , n is the
reverse6 of the linear order that we imposed on [n] in Remark 7.4.

6 We reverse it because the initial term in< f is the largest monomial of f , while basis activities are usually
defined in terms of the smallest elements of circuits and cocircuits.
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Notice that each term of a given f h
D has degree one in the y-variables and is homo-

geneous. Thus by the remark, the leading term of f h
D depends only on the linear order

on 1, . . . , n. Therefore

in< G = 〈xd1 yd2 yd3 · · · ydk : D = {d1, . . . , dk} is a cocircuit of M and d1 = min
<

D〉.

In other words,

in< G = C(M∗,<)

is the Stanley–Reisner ideal of the external activity complex Act<(M∗) of M∗, as
described in Theorem 5.2. Therefore

in< G =
⋂

B basis of M

〈 xe : e ∈ I A<(B) , ye : e ∈ I P<(B)〉. (4)

Applying Proposition 3.3 to (4) then gives

mdeg in< G =
∑

B basis

tb1 · · · tbr = mdeg I (˜L).

We also have that

mdeg I (˜L) = mdeg in< I (˜L)

since multidegree is preserved by flat degenerations. Therefore, both ideals in the
inclusion

in< G ⊂ in< I (˜L)

have the samemultidegree. Since the smaller ideal is reduced and equidimensional, this
implies that in< G = in< I (˜L) [19, Lemma 1.7.5]. Since < was arbitrary, G = { f h

C }
is a universal Gröbner basis for I (˜L). To see that G is reduced for each term order,
just notice that no term divides another, because no cocircuit contains another. �	
Proof of (f) Now that we know that in< G = in< I (˜L), this follows from (4). �	
Proof of (d) By (f) and Theorem 2.6, any initial ideal has bidegree tr hM (s, t). The
result then follows from the fact that bidegree is degenerative [26]. �	
Proof of (a) Since no term of any generator in G divides any other term, the elements
of G are linearly independent over k, and they minimally generate 〈G〉 = I (˜L). �	
Proof of (e) Finally, we prove our upper bound for the number of distinct initial ideals
of in< I (˜L). One way to proceed is to invoke [34, Cor. 2.9]: If G is a universal Gröbner
bases of I which is a reduced Gröbner basis with respect to any term order <, then
the Minkowski sum

∑

g∈G New(g) is a state polytope for I , so its vertices are in
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bijection with the initial ideals of I . Here New(g) denotes the Newton polytope of g.
The Newton polytope of each homogenized cocircuit f h

D is, after translation, equal
to ∇I = conv{hi : i ∈ I }, where hd = fd − gd and f1, . . . , fn, g1, . . . , gn is the
standard basis for R

2n . It follows that
∑

f h
D∈G New(g) = ∑

D cocircuit ∇D is affinely

isomorphic to
∑

D cocircuit �D = OM . The result then follows by Theorem 1.8 (d).
We also give a self-contained algebraic proof. If we take an initial ideal of I (˜L)

and set all the y-variables equal to 1, then we obtain an initial ideal of I (L). Hence,
we have a map

{initial ideals of I (˜L)} ρ→ {initial ideals of I (L)}.

This map is surjective since the cocircuits and their homogenizations are universal
Gröbner bases.

Each initial ideal in< I (˜L) of I (L) is of the form IB = 〈xb1 , . . . , xbr 〉, where
B = {b1, . . . , br } is the <-minimum basis of B [34, Prop. 2.11]. Hence, the map ρ

is surjective onto a set with b elements. The preimage of IB is a set of ideals in the x
and y variables. Now, any term order which determines an ideal in ρ−1(IB) obviously
always selects a term from each homogenized cocircuit with an xbi for some i . Hence,
the relative order of the variables xbi is sufficient to determine in< I (˜L). There are r !
such orders, so the number of initial ideals of I (˜L) is at most r ! · b. �	
Theorem 1.5 Let L be a linear d-space in A

n, and I (˜L) the ideal of its closure in
(P1)n. The nonzero multigraded Betti numbers of S/I (˜L) are precisely:

βi,a(S/I (˜L)) = |μ(F,̂1)|

for each flat F of M, where i = r − r(F), and a = e[n]−F . Here μ is the Möbius
function of the lattice of flats of M. Furthermore, all of the initial ideals have the same
Betti numbers:

βi,a(S/I (˜L)) = βi,a(S/(in< I (˜L)))

for all a and for every term order <.

Proof As we already remarked, the initial ideal

in< I (˜L) = C(M∗,<) = 〈xd1 yd2 yd3 · · · ydk : D = {d1, . . . , dk}
is a cocircuit of M and d1 = min

<
D〉

is closely related to the Stanley–Reisner ideal

II N (M∗) = 〈xd1xd2 · · · xdk : D = {d1, . . . , dk} is a cocircuit of M〉

of the independence complex I N (M∗) of the dual matroid M∗. More precisely, the
second is obtained from the first by setting yi = xi . In fact, we now show that this
substitution is equivalent to taking C(M∗,<) modulo a regular sequence. This will
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follow from the primary decomposition of in< I (˜L) given by Theorem 5.2, together
with the following lemma:

Lemma 6.2 Let I be a squarefree monomial ideal in S = k[x1, . . . , xn, y1, . . . , yn]
satisfying

(P1) For each i , no associated prime of I contains both xi and yi , and
(P2) No minimal generator of I contains a product of the form xi yi .

Then

{x1 − y1, . . . , xn − yn}

is a regular sequence on S/I .

Proof Notice that (P1) implies that x1− y1 is a regular element on S/I . We now form
the ideal

I ′ = I ⊗ S/(x1 − y1)

whichwe realize as an ideal in the polynomial ring S/(x1)via the substitution x1 �→ y1.
We claim that I ′ has properties (P1), (P2), and then, the proof will be complete by
induction.

First, the minimal generators of I ′ are precisely the generators of I after the sub-
stitution x1 �→ y1. Thus, (P2) is satisfied.

Now denote the primary decomposition of I as I = ⋂

Pi . Let P ′
i denote the ideal

obtained from Pi after the substitution x1 �→ y1. We claim that

I ′ =
⋂

P ′
i .

Substitution is a ring map, and this easily implies the inclusion I ′ ⊂ ⋂

P ′
i . For the

opposite conclusion, suppose that f is a minimal generator of
⋂

P ′
i . We need to show

that f ∈ I ′. Notice that f does not involve x1. We have two cases:
Case 1: y1 does not divide f . In this case, f ∈ P ′

i implies f ∈ Pi for all i , so
f ∈ I . But then f ∈ I ′ also, since f does not involve x1 or y1, the variables that
change under our substitution.

Case 2: y1 divides f , say f = y1g. Consider the element h = x1 f . Since h is
divisible by both x1 and y1, and since f is in

⋂

P ′
i , we know h is in fact in each ideal

Pi . Thus, h = x1y1g ∈ I . But since I has no minimal generators divisible by x1y1
by (P1), we know that either x1g or y1g must be in I . Under the substitution, both of
these elements will be sent to f , so that f ∈ I ′.

We conclude that indeed I ′ = ⋂

P ′
i , which implies that I ′ satisfies (P1). This

completes the proof by induction. �	
With Lemma 6.2 at hand, we are now ready to prove Theorem 1.5. As taking initial

ideals is a flat degeneration, we have

βi,a(S/I (˜L)) ≤ βi,a(S/(in< I (˜L)))
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for all i and a. As explained in Sect. 3.1, the only way that this inequality can be strict
is due to a consecutive cancelation in the minimal free resolution of S/ in< I (˜L).
This requires that βi,a(S/(in< I (˜L))) is nonzero for some a and for two consecutive
values of i . However, since {x1 − y1, . . . , xn − yn} is a regular sequence by the
previous Lemma, we know that the Betti numbers of S/(in< I (˜L)) equal those of
the independence ideal k[x1, . . . , xn]/II N (M∗). Theorem 2.9 then shows that no such
consecutive cancelations are possible. �	
Theorem 1.6 If L is a linear space, then the ideal I (˜L) and all of its initial ideals
are Cohen–Macaulay.

Proof An ideal is Cohen–Macaulay if and only if its codimension is equal to its
projective dimension. Since both ideals are of the same codimension and

βi,a(S/I (˜L)) = βi,a(S/(in< I (˜L)))

by Theorem 1.5, it is sufficient to prove that in< I (˜L) is Cohen–Macaulay.
Now, Theorem1.5 also tells us that the projective dimension of S/(in< I (˜L)) equals

r , the rank of M . Also since S/(in< I (˜L)) is the Stanley–Reisner ring of Act<(M∗),
whose facets have 2n − r elements, its codimension is also r . The desired result
follows. �	

7 The nonhomogeneous case: affine linear spaces

So far, we have assumed that the linear space L was actually a vector subspace of
kn . This is a minor assumption, but nonetheless, the nonhomogeneous case has some
interesting features.

In this section, suppose that L is an affine linear subspace defined by the matrix
equation

A · �x = �b,

and let ˜L be its closure in (P1)n . Now the invariants of ˜L are controlled by (any two
of) the following triple of matroids (Mhom, M, M ′):

• the matroid M on [n] that we associated to the subspace A · �x = �0,
• the augmented matroid Mhom on [0, n] associated to the subspace (A | (−b)) ·−−−→

(x, x0) = �0,
• the matroid M ′ on [n] of the subspace obtained from (A | (−b)) · −−−→

(x, x0) = �0 by
eliminating x0.

Any two of these matroids determine the third. They are related by

M = Mhom\0, M ′ = Mhom/0.

The triple (Mhom, M, M ′) is equivalent to a pointed matroid [9] or a semimatroid [3].
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7.1 Matroid preliminaries: strong maps and Tutte polynomials

The matroids M and M ′ above can be thought to have the same ground set. They
constitute a strong map or morphism of matroids, denoted M → M ′; this means that
every flat of M ′ is a flat of M . There are several other useful equivalent definitions
(see [21]). Just as matroids are an abstraction of vector configurations, strong maps of
matroids are an abstraction of linear maps.

Las Vergnas [23] defined the Tutte polynomial of a strong map M → M ′ to be

TM→M ′(x, y, z) =
∑

S⊆E

(x − 1)r ′(E)−r ′(S)(y − 1)|S|−r(S)zrcdM,M ′ (S)

where r and r ′ are the rank functions of M and M ′, and rcdM,M ′(S) = (r(E) −
r ′(E)) − (r(S) − r ′(S)).

He also gave an activity interpretation of this polynomial, which we now describe.
For an independent set X of M and i /∈ X , the set X ∪ i contains at most one circuit C
of M (which must contain i). If C does exist and i is the smallest element in C , then
we say i is externally active with respect to X in M . Dually, for a spanning set X of
M ′, the set (E − X) ∪ i contains at most one cocircuit D of M ′ (which must contain
i). If D does exist, and i is the smallest element in D, then we say i is internally active
with respect to X in M ′.

Theorem 7.1 [23] Consider any strong map of matroids M → M ′ and any linear
order < on the ground set E of M and M ′. Then

TM→M ′(x, y, z) =
∑

S⊆E

x |I A′(S)|y|E A(S)|zrcdM,M ′ (S)

summing over the sets S which are spanning in M ′ and independent in M, where I A′(S)

represents the set of internally active elements of S in M ′, and E A(S) represents the
externally active elements with respect to S in M.

7.2 A nonhomogeneous example

Before we state and prove our theorems about affine subspaces, we carry out an
example in detail which displays most of the interesting features.

Example 7.2 Consider the affine subspace L of A
6 given by the linear ideal

I (L) = 〈x1 + x2 + x6 + a, x2 − x3 + x5 + b, x3 + x4 + c〉,

where a, b, c are parameters.

The matroid M is the same one we studied in Example 1.7, while Mhom is the
matroid of the ideal in seven variables

I (Lhom) = 〈x1 + x2 + x6 + ax0, x2 − x3 + x5 + bx0, x3 + x4 + cx0〉
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Fig. 5 The triple (Mhom , M, M ′) corresponding to the affine subspace L

which defines a linear space Lhom inA
7.We can also see Mhom as thematroid obtained

by adding the point (a, b, c) to our point configuration of columns.
From now on, we assume (a, b, c) = (1, 0, 1). Figure 5 shows the enlarged point

configuration, the original point configuration, and the contracted point configuration.
They correspond, respectively, to the matroids Mhom , M , and M ′.

Notice that every basis of M is still a basis in Mhom . Every cocircuit of M gives rise
to a cocircuit of Mhom by adding 0 if necessary. As a partial converse, every cocircuit
of Mhom contains a cocircuit of M . Furthermore, if D is a cocircuit of Mhom containing
0, then D − 0 is a cocircuit of M . In our example, the cocircuits are:

D = {126, 1356, 1456, 235, 245, 34}
Dhom = {0126, 01356, 1456, 235, 0245, 034, 12346}

We will show in Theorem 7.3 that the six homogenized cocircuits of I (L), which
correspond to the cocircuits D of M , minimally generate I (˜L) and give a universal
Gröbner basis:

I (˜L) = 〈x1y2y6 + y1x2y6 + y1y2x6 + 1y1y2y6, . . . , x3y4 + y3x4 + 1y3y4〉.

Some of the invariants of I (˜L) depend only on M as before. The multidegree of ˜L is
still given by the thirteen bases of the matroid M . The multigraded Betti numbers also
stay the same as before.

On the other hand, the initial ideals of I (˜L) depend on the augmented matroid
Mhom as well. For w(x1/y1) > · · · > w(x6/y6) > 0, the initial ideal in< I (˜L) is the
same as in the homogeneous case:

in< I (˜L) = 〈x1y2y6, x1y3y5y6, x1y4y5y6, x2y3y5, x2y4y5, x3y4〉
= 〈x1, x2, x3〉 ∩ 〈x1, x2, y4〉 ∩ 〈x1, y3, y4〉 ∩ 〈x1, x3, y5〉 ∩ 〈x1, y4, y5〉 ∩

〈y2, y3, y4〉 ∩ 〈y2, x3, y5〉 ∩ 〈x2, x3, y6〉 ∩ 〈y2, y4, y5〉 ∩ 〈x2, y4, y6〉 ∩
〈y3, y4, y6〉 ∩ 〈x3, y5, y6〉 ∩ 〈y4, y5, y6〉.

However, if 0 > w(x1/y1) > · · · > w(x6/y6), we have

in< I (˜L) = 〈y1y2y6, y1y3y5y6, x1y4y5y6, x2y3y5, y2y4y5, y3y4〉
= 〈x1, y2, y3〉 ∩ 〈y1, x2, y4〉 ∩ 〈y1, y3, y4〉 ∩ 〈y1, y3, y5〉 ∩ 〈y1, y4, y5〉 ∩

〈y2, y3, y4〉 ∩ 〈y2, y3, y5〉 ∩ 〈y2, y3, y6〉 ∩ 〈y2, y4, y5〉 ∩ 〈x2, y4, y6〉 ∩
〈y3, y4, y6〉 ∩ 〈y3, y5, y6〉 ∩ 〈y4, y5, y6〉.
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Table 1 Number of initial ideals for various choices of (a, b, c)

(a, b, c) Number of initial ideals of I (˜L) Number of initial ideals of I (˜Lhom )

(0, 0, 0) 72 72

(1, 0, 1) 124 144

(2, 2, 3) 114 156

(1, −1, 1) 111 150

(1, 2, 3) 107 162

We will see that the 13 primary components still correspond to the 13 bases of M .
However, in the primary component 〈zi : i ∈ B〉, we have zi = xi if i is internally
active in B as a basis of Mhom , and zi = yi otherwise.

Notice that, in contrast with the linear case, I (˜L) is no longer bihomogeneous under
the bigrading bideg xi = (1, 0) and bideg yi = (0, 1). However, some initial ideals
still have interesting bidegrees. For any term order withw(x1/y1), . . . , w(x6/y6) > 0,
we saw in Example 1.7 that the bidegree of in< I (˜L) is s3 + 3s2t + 5st2 + 4t3. This
is essentially the h-polynomial of M . We will also show that for any term order with
0 > w(x1/y1), . . . , w(x6/y6), the bidegree of in< I (˜L) is 3st2+10t3. It is not obvious
that all these initial ideals should have the same bidegree; this will follow from the
fact that this polynomial is an evaluation of the Tutte polynomial of the strong map of
matroids M → M ′.

The number of initial ideals also depends on Mhom . Table 1 shows these numbers
for five choices of (a, b, c). In Fig. 1, they correspond, respectively, to adding point
0 as a loop, as the intersection of lines 23 and 146, as a generic point on line 24, as a
generic point on line 136, or as a generic point in the plane. Somewhat surprisingly,
a special choice of (a, b, c) can lead to more initial ideals for I (˜L) than a generic
choice.

For homogeneous linear spaces L , we proved that the number of initial ideals of
I (˜L) is at most r ! · b where r = n − d is the codimension of L and b is the number
of bases of M(L). This bound is visibly false in the nonhomogeneous case, as shown
in Table 1. Instead, we will prove a bound of r ! · bhom , where bhom is the number of
bases of Mhom .

The following theorem is the affine analog of Theorem 1.3.

Theorem 7.3 Let L ⊂ A
n be a d-dimensional affine space and let ˜L ⊂ (P1)n be the

closure of L induced by the embedding A
n ↪→ (P1)n. Let (Mhom, M, M ′) be the triple

of matroids of L. Then,

(a) The homogenized cocircuits of I (L) minimally generate the ideal I (˜L).
(b) The homogenized cocircuits of I (L) form a universal Gröbner basis for I (˜L),

which is reduced under any term order.
(c) The Z

n-multidegree of ˜L is
∑

B
tb1 · · · tbr summing over all bases B = {b1, . . . , br }

of M.
(d) The bidegree of the ideal I (˜L) is not well-defined unless L is a linear subspace.

However:
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1. For every term order < with xi > yi for all i ,

bideg in< I (˜L) = tr hM (s/t),

where hM (x) = TM (x, 1) is the h-polynomial of M and TM (x, y) is its Tutte
polynomial.

2. For every term order < with xi < yi for all i ,

bideg in< I (˜L) = tr TM→M ′(s/t, 1, 0),

where TM→M ′(x, y, z) is the Tutte polynomial of the strong map of matroids
M → M ′.

(e) There are at most r !·bhom distinct initial ideals of I (˜L), where bhom is the number
of bases of Mhom.

(f) The primary decomposition of an initial ideal in< I (˜L) is given by:

in< I (˜L) =
⋂

B basis of M

〈 xe : e ∈ I Ahom
< (B) , ye : e ∈ I Phom

< (B)〉

where B = I Ahom
< (B) 	 I Phom

< (B) is the partition of B into internally active
and passive elements with respect to <, when regarded as a basis of Mhom.

Remark 7.4 Again, a remark is in order about the choice of order in Theorem 1.3 (d,f).
Now an initial ideal in< I (˜L) is determined by the relative order of 0 and the weights
of x1/y1, . . . , xn/yn . We then assign the opposite order < to 0, 1, . . . , n in M and
Mhom , and this is the linear order < with respect to which I Ahom

< (B) and I Phom
< (B)

are defined.

Proof of (c) The proof of Theorem 1.3 (c) carries through unchanged to show that

mdeg ˜L =
∑

b∈B

tb1 · · · tbk

where the sum is taken over all bases b = {b1, . . . , bk} of M(L). �	
Proof of (a) Let

Dh = { f h
D | D ∈ D}

be the set of homogenized cocircuits of I (L). To see that it is a minimal generating
set for I (˜L), we notice that under the lexicographic monomial order x1 > · · · > xn >

y1 > · · · > yn , the initial terms of each element of Dh are independent of �b. In fact,
they are the same as the leading terms in the case when �b = 0. Hence, ideally, these
monomials generate a primary decomposition given by Theorem 1.3 (f). Then, the
argument of Theorem 1.3 (b) shows that Dh is a Gröbner basis under this term order,
and in particular it generates I (˜L). The argument of Theorem 1.3 (a) then shows that
Dh is indeed a minimal generating set for I (˜L). �	
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Proof of (f) Let < be a monomial term order on k[x1, . . . , xn, y1, . . . , yn]. Say <

is given by a weight vector on x1, . . . , xn, y1, . . . , yn . Redefining the weights to be
w′(xi ) = w(xi ) − w(yi ) and w′(yi ) = 0 for all i does not affect the leading terms of
polynomials in I (˜L). This allows us to assume that

w(x1) > w(x2) > · · · > w(xn), w(yi ) = 0 for all i.

We extend < to a term order on k[x0, . . . , xn, y0, . . . , yn] by assigning w(x0) =
w(y0) = 0. This ensures that the initial term computations in I (˜Lhom) mimic exactly
those in I (˜L).

Now letDh
hom = {gh

D | D ∈ Dhom} be the set of homogenized cocircuits of I (˜Lhom).
This is a universal Gröbner basis for I (˜Lhom) by Theorem 1.3 (b); let

J := in< Dh
hom = in< I (˜Lhom).

We claim that
in< I (˜L) = J (x0 = 1, y0 = 1). (5)

First notice that any f ∈ I (˜L) can be further “bi-homogenized” to a polynomial
f ′ ∈ I (˜Lhom) which is homogeneous in the x variables and in the y variables, by
multiplying each monomial by a suitable factor of x0 or y0. Then, one easily checks
that in< f = in< f ′|x0=y0=1. This shows that in< I (˜L) ⊂ J (x0 = 1, y0 = 1).

To show the other inclusion, it suffices to show that J (x0 = 1, y0 = 1) and I (˜L)

have the same multidegree, and we can do that using Proposition 3.3. The primary
decomposition of J has components corresponding to the bases of Mhom , as described
in Theorem 1.3 (f). In this primary decomposition, setting x0 = y0 = 1 is equivalent
to ignoring the components that contain x0 or y0, which correspond to the bases of
Mhom that contain 0. Thus, the only components that survive are those that correspond
to bases of M , and

J (x0 = 1, y0 = 1) =
⋂

B basis of M

〈 xe : e ∈ I Ahom
< (B) , ye : e ∈ I Phom

< (B)〉 (6)

where B = I Ahom
< (B) 	 I Phom

< (B) is the partition of B into internally active and
passive elements with respect to <, when regarded as a basis of Mhom . It follows that
mdeg J = ∑

B tb1 · · · tbr where we sum over all bases B = {b1, . . . , br } of M . By
(c), this is equal to mdeg in< I (˜L) = mdeg I (˜L). This completes the proof of (5),
and combining it with (6) gives (f). �	
Proof of (b) Now, to prove that Dh is a universal Gröbner basis for I (˜L), we need to
show that in< Dh generates in< I (˜L) = J (x0 = 1, y0 = 1) for any<. Take a generator
m of J (x0 = 1, y0 = 1); by definition, this is the initial term of a homogenized
cocircuit gh

D of I (˜Lhom) after setting x0 = y0 = 1; here D ∈ Dhom is a cocircuit of
Mhom .

Let D = {d1 < · · · < dk} so that m = xd1 yd2 · · · ydk |x0=y0=1. If 0 ∈ D, then
D − 0 is a cocircuit of M with initial term m, so m ∈ in< Dh . If 0 /∈ D and D is
also a cocircuit of M , then m ∈ in< Dh automatically. Finally, assume that 0 /∈ D
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and D is not a cocircuit of M . Then, one may verify that there is a cocircuit D′ ⊆ D
of M containing d1 (which must be its smallest element). Therefore, in< f h

D′ divides
xd1 yd2 · · · ydk = m and m ∈ in< Dh as desired.

Since<was arbitrary, it follows thatD is a universal Gröbner basis for I (˜L). Again,
no term in any polynomial inD divides another, soD is reduced under any term order.

�	
Proof of (e) Recall from (5) that each initial ideal of I (˜L) is the evaluation of an initial
ideal of I (˜Lhom) at x0 = 1, y0 = 1. Since there are at most r ! · bhom such ideals, the
result follows. �	
Proof of (d) It follows from (f) that

bideg in<(˜I ) =
∑

B basis of M

s|I Ahom(B)|tr−|I Ahom(B)| (7)

where I Ahom(B) is the set of internally active elements of B as a basis of Mhom .

1. If 0 is the largest element of Mhom , then it does not affect the internal activity of
any basis. Therefore, I A′(B) = I A(B) for all B and bideg in<(˜I ) = tr hM (s/t)
by Theorem 2.6.

2. Suppose 0 is the smallest element of Mhom . From Theorem 7.1, it follows easily
that

TM→M ′(x, y, 0) =
∑

B basis of M

x |I A′(B)|y|E A(B)|,

so it remains to show that I A′(B) = I Ahom(B) for any basis B of M . We prove both
inclusions.

Let i ∈ I A′(B). Then, there is a cocircuit D ⊆ (E − B) ∪ i of M ′ whose smallest
element is i . Now, every cocircuit of M ′ = Mhom/0 is a cocircuit of Mhom , so i is the
minimum in the unique cocircuit D ⊆ (E −B)∪i of Mhom . Therefore, i ∈ I Ahom(B).

Let i ∈ I Ahom(B). Then, i is the minimum element in the unique cocircuit D ⊆
(E − B) ∪ i of Mhom . Since 0 < i , we must have 0 /∈ D. But every cocircuit of Mhom

not containing 0 is also a cocircuit of Mhom/0 = M ′, and hence, i is minimum in the
unique cocircuit D ⊆ (E − B) ∪ i of M ′. Therefore, i ∈ I A′(B). The desired result
follows. �	
Theorem 7.5 Let L be an affine linear d-space in A

n, and I (˜L) the ideal of its closure
in (P1)n. The nonzero multigraded Betti numbers of S/I (˜L) are precisely:

βi,a(S/I (˜L)) = |μ(F,̂1)|

for each flat F of M, where i = r − r(F), and a = e[n]−F . Here μ is the Möbius
function of the lattice of flats of M.

Furthermore, all of the initial ideals have the same Betti numbers:
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βi,a(S/I (˜L)) = βi,a(S/(in< I (˜L)))

for all a and for every term order <.

Proof In view of Theorem 7.3 (f), Lemma 6.2 still applies here, and the proof of
Theorem 1.5 extends directly from the linear case to the affine case. �	
Theorem 7.6 If L is an affine subspace of A

n, then the ideal I (˜L) and all of its initial
ideals are Cohen–Macaulay.

Proof The proof of Theorem 1.6 applies here as well. �	

8 Future directions

• What can be said about the closure of a linear space L ⊂ A
n induced by an

embedding A
n ↪→ P

a1 × · · · × P
ak where {a1, . . . , ak} is a partition of n?

• Is there a common generalization of our results and the recent work of Li [22]?
• We believe the simplicial complex Act<(M) deserves further study. What is its
topology? Is it shellable? How is it related to the active order defined by Las
Vergnas [24] and further studied by Blok and Sagan [10]? These questions are the
subject of an upcoming project.

• The Tutte polynomial of a matroid can be described in terms of the interaction of
the internal and external activities of the bases of M . In that spirit, is there a sim-
plicial complex extending Act<(M) which simultaneously involves the internal
and external activities of the bases of M? Ideally, we would like it to come from
a natural geometric construction.

• The polynomial TM→M ′(x, 1, 0) might deserve to be called the h-polynomial of
the strong map of matroids M → M ′, in light of Theorem 7.3 (d). Does it satisfy
some of the properties of the h-polynomial of a matroid, which has been studied
extensively?
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