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Let I be a monomial ideal of height c in a polynomial ring 
S over a field k. If I is not generated by a regular sequence, 
then we show that the sum of the betti numbers of S/I is at 
least 2c + 2c−1 and characterize when equality holds. Lower 
bounds for the individual betti numbers are given as well.
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1. Introduction

If I is a homogeneous ideal in a polynomial ring S over a field k, the betti number 
βi(S/I) denotes the rank of the i-th free module appearing in a minimal S-free resolution 
of S/I. The main result of this paper is the following:

Theorem 1.1. Let I be a monomial ideal of height c in a polynomial ring S. If I is not 
a complete intersection then 

∑
βi(S/I) ≥ 2c + 2c−1. Furthermore, equality holds if and 

only if the betti numbers are {1, 3, 2}, {1, 5, 5, 1}, or a extension thereof by tensoring with 
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a Koszul complex. By this we mean that when equality holds the generating function for 
βi(S/I) is either

(1 + 3t + 2t2)(1 + t)c−2, or (1 + 5t + 5t2 + t3)(1 + t)c−3.

Suppose I is an arbitrary ideal of height c and let β(S/I) denote the sum of the betti 
numbers of S/I. If S/I is a complete intersection (CI), then the Koszul complex is a 
resolution and β(S/I) = 2c. It has been conjectured that for arbitrary ideals, β(S/I) ≥
2c, a fact that was only settled this year by Walker (provided char k �= 2) [13]. This “Total 
Rank Conjecture” is a weaker version of a conjecture due to Buchsbaum–Eisenbud [3]
and Horrocks [11] that if I has height c then βi(S/I) ≥

(
c
i

)
. If c ≥ 5 this is wide open. 

For a history of this problem and results in special cases, see [1,4,8,9,13].
The motivation for this paper stems from work of Charalambous, Evans, and Miller 

[5–7] concerning stronger bounds for the sum of the betti numbers when S/I is not a 
CI. They proved that if S/I is not a CI then β(S/I) ≥ 2c + 2c−1 provided:

(1) I has finite colength and is monomial; or
(2) I has finite colength and c ≤ 4.

Our contribution is thus to remove the finite colength assumption from (1), which is 
non-trivial. Indeed, in [5,6], in the context of multi-graded modules of finite length, the 
authors proved that for monomial ideals of finite colength, if S/I is not a CI then one has 
βi(S/I) ≥

(
c
i

)
+
(
c−1
i−1

)
from which they derive the inequality for β(S/I) by summing. This 

bound on the individual betti numbers is rather strong and is false for monomial ideals 
not of finite colength. For instance, it implies that the last betti number is always at least 
two, which implies the interesting fact that if I is monomial of finite colength and S/I
is Gorenstein then it is a complete intersection – a fact that is not true if dim(S/I) > 1. 
Indeed, Charalambous and Evans noted that the sequence {1, 5, 5, 1} violated their bound 
and thus is not the betti sequence of any multi-graded module of finite length. However, 
this is the betti sequence of S/I when I = (xy, yz, zv, vw, wx) ⊂ S = k[v, w, x, y, z], so 
the bounds for monomial ideals are not the same as those in the finite colength case. In 
this example, S/I is a complete intersection locally at each associated prime, and thus 
a localization argument reducing to the finite colength case (which requires I to not be 
a CI) cannot work. This is precisely the obstruction we address in this paper.

What is surprising about Theorem 1.1 is that although the bounds on the individual 
betti numbers discovered in [5,6] for monomial ideals of finite colength do not hold for 
arbitrary monomial ideals, the sum of the betti numbers is still as large as these bounds 
predict. Our method is outlined in Section 2. Roughly speaking, we reduce the problem 
to ideals that are complete intersections on the punctured spectrum, and then find tight 
bounds on the betti numbers for such ideals. We are able to control the sum of the betti 
numbers in our arguments, even though the beautiful bounds discovered in [5,6] for the 



A. Boocher, J. Seiner / Journal of Algebra 508 (2018) 445–460 447
finite length case cannot be extended directly. We close by summarizing what we can 
say about the individual betti numbers (in Section 5).

In one sense it seems almost coincidental that {1, 5, 5, 1} sums to 23 + 22 and by our 
Theorem, this is essentially the only case (along with {1, 3, 2}) where β(S/I) = 2c+2c−1. 
We ask the following questions:

Question 1.2. If I is a homogeneous ideal of height c in a polynomial ring S that is not 
a CI, is

β(S/I) ≥ 2c + 2c−1?

We remark that this was raised in [4] when I has finite colength. Given the content of 
this paper, it would be interesting to consider whether a proof in the finite colength case 
would imply an answer in general. Finally, although we expect that the betti sequences 
of monomial ideals are rather special, we remark that even for general homogeneous 
ideals, we know of no ideal I where β(S/I) = 2c +2c−1 but where the betti numbers are 
different than those in Theorem 1.1.

Question 1.3. If I is a homogeneous ideal of height c in a polynomial ring and ∑
βi(S/I) = 2c + 2c−1, then are the betti numbers of S/I of the form given in Theo-

rem 1.1?

1.1. Notation

Because our analysis of monomial ideals involves referring to particular variables, we 
shall use the convention that all lowercase letters are assumed to be variables in S. 
Capital letters, when used to refer to elements in a ring will denote monomials. If M
is a finitely generated multi-graded S-module then by β(M) we mean 

∑
βi(M). If I is 

generated by a regular sequence we will say that S/I is a complete intersection (CI) and 
by an abuse of notation we will also say that I is a CI. By the support of a monomial 
ideal I, denoted supp I, we will mean the set of variables that appear in at least one 
minimal monomial generator of I.

2. Reduction to nearly complete intersections

In this section we show that the proof of Theorem 1.1 can be reduced to a special 
class of ideals we call nearly complete intersections, which we define below. The rough 
idea is that localizing an ideal should only decrease the betti numbers, and if ever we can 
localize to something with either a larger height, or an ideal with fewer variables in its 
support, then we can use induction to bound the betti numbers. We will consider only 
localization at monomial prime ideals, which is essentially the same as inverting variables 
(see Lemma 2.2). Since Theorem 1.1 concerns ideals that are not complete intersections, 
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an obstruction to this procedure will be those ideals, like I = (xy, yz, zv, vw, wx) that 
are not CI, but such that all monomial localizations are CI.

Remark 2.1. Since the betti numbers and height of an ideal are preserved upon polariza-
tion, (see for instance [12, Corollary 1.6.3]) in what follows we consider only squarefree 
monomial ideals.

Lemma 2.2. Suppose that I is a squarefree monomial ideal in S with minimal monomial 
generators g(I). Let P be a monomial prime ideal, that is, a subset of the variables of S. 
Let J be the ideal generated by the g(I) after setting the variables not in P equal to 1. 
Then βi(S/I) ≥ βi(S/J). Further, ht I ≤ htJ .

Proof. Since in SP /IP all variables not in P are units, it follows that SP /IP = SP /JP . 
Since localization is exact, we know that a minimal free resolution of S-modules remains 
exact upon localization at P . It will be minimal precisely when all the maps have entries 
in P . Hence,

βi(S/I) ≥ βi(SP /IP ) = βi(SP /JP ) = βi(S/J).

The last equality follows since J involves only variables in P . The result on the height 
follows as I ⊂ J . �

This observation is enough to recover the Buchsbaum–Eisenbud–Horrocks Rank Con-
jecture for monomial ideals, which is well-known:

Proposition 2.3. Suppose that I is a squarefree monomial ideal and that I has an asso-
ciated prime P of height c. Then βi(S/I) ≥

(
c
i

)
.

Proof. Since I can have no embedded primes, we see that SP/IP = SP /PP . Note P is 
a prime monomial ideal and thus a CI. Hence βi(S/I) ≥ βi(SP /IP ) = βi(SP /PP ) =

(
c
i

)
by Lemma 2.2. �
Remark 2.4. This idea can also be extended to prove that if M is a multi-graded module 
whose annihilator has height c then βi(M) ≥

(
c
i

)
. For the details, see [5, Section 4].

We will frequently make use of Lemma 2.2 in the case that P is the ideal generated by 
all the variables but one variable x. If this is the case, we will write I(x = 1) to denote 
the ideal J described in Lemma 2.2.

Definition 2.5. We say that a squarefree monomial ideal I is nearly a complete intersec-
tion (NCI) if it is generated in degree at least two, is not a CI, and for each variable x
in the support of I, I(x = 1) is a CI.

We now outline our basic plan of attack:
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Algorithm 2.6. Suppose that I is a squarefree monomial ideal of height c that is not a 
CI. We describe the following algorithm:

• If some variable x is a generator of I, then choose such an x and return J , the ideal 
generated by the remaining minimal generators. We say that I is a cone over J . 
Notice:
– htJ = c − 1;
– β(S/I) = 2β(S/J);
– since I is not a CI then neither is J .

If no variable is a generator then:

• If there is a variable x such that I(x = 1) is not a CI, then choose such an x and 
return J = I(x = 1). Notice β(S/I) ≥ β(S/J) and htJ ≥ ht I.

• If for each variable x, I(x = 1) is a complete intersection then return I, which is 
NCI.

The following theorem will be proven in Section 4.

Theorem 2.7. If I is NCI of height c then β(S/I) ≥ 2c + 2c−1.
Equality holds in only two cases: if c = 2 and the betti numbers of S/I are {1, 3, 2}, 

and if c = 3 and the betti numbers of S/I are {1, 5, 5, 1}.

Using Theorem 2.7 we are able to prove Theorem 1.1.

Proof of Theorem 1.1. By Remark 2.1 we may assume that I is squarefree. For the 
inequality we note that if I is NCI then we are done by Theorem 2.7. If not, we can 
iterate Algorithm 2.6 until we arrive at a NCI ideal J . In so doing, suppose we have 
encountered d cones. Then we have that htJ ≥ c − d and

β(S/I) ≥ 2dβ(S/J).

By Theorem 2.7 we know that β(S/J) ≥ 2ht J + 2ht J−1 ≥ 2c−d + 2c−d−1. Thus

β(S/I) ≥ 2c + 2c−1.

Notice that equality holds only if htJ = c − d, β(S/J) = 2c−d + 2c−d−1, and at each 
stage of the algorithm, equality of betti numbers holds. By Theorem 2.7, this happens 
only if htJ = 2 or htJ = 3 in which case the betti numbers of S/J are respectively 
{1, 3, 2} or {1, 5, 5, 1}. Thus the betti numbers of S/I are given by cones on these as 
required. �
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3. Two decomposition techniques

Having reduced the problem to studying NCI ideals, we roughly classify them, and 
compute bounds for their betti numbers. As we show in the next section, we require two 
very different techniques to bound the betti numbers. The first technique, developed in 
[10], comes from the world of betti splittings which gives the betti numbers of I in terms 
of the betti numbers of the three related ideals. This only works in certain cases but 
has the benefit that everything can be stated in terms of ideals, our subject of study. 
The second technique, developed in [2] works in general but relates the betti numbers 
of S/I to those of S/(I, x) and the module H = (I : x)/I both regarded as modules 
over the polynomial ring S/(x). The downside of this approach is that H need not be 
a cyclic module, and hence induction is not possible. We summarize these two ideas in 
this section.

Proposition 3.1 (Corollary 2.7 of [10]). Suppose that I is a squarefree monomial ideal 
and I can be written as I = xJ + K for monomial ideals J and K with x /∈ suppK. If 
J has a linear resolution then

βi(I) = βi(J) + βi(K) + βi−1(J ∩K), for all i.

Proposition 3.2 (Theorem 2.3 and Proposition 2.5 of [2]). Let I be a squarefree monomial 
ideal and let x be a variable. Let J = (I, x) and regard H := (I : x)/I and S/J , as 
modules over the polynomial ring R = S/(x). Then

βS
i (S/I) = βR

i (S/J) + βR
i−1(H).

Example 3.3. Consider I = (uv, vw, wx, xy, yz, zu) ⊂ S. It has height 3 and betti 
numbers {1, 6, 9, 6, 2}. As a module over R = S/(x), we have that S/(I, x) =
R/(uv, vw, yz, zu) with betti numbers {1, 4, 4, 1}. The module H = (I : x)/I is min-
imally generated by two elements (namely w and y) and has the following presentation 
over R:

R5

(
v zu 0 0 y
0 0 z uv −w

)

R2 H.

Its betti numbers are {2, 5, 5, 2}.

We are able to explicitly write down a presentation for H, which will be helpful in 
computing βR

i (H).
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3.1. The presentation matrix

Let H = (I : x)/I and regard H as an R = S/(x) module. Clearly, if I is a squarefree 
monomial ideal, and xF1, . . . , xFn are those minimal generators divisible by x then the 
images of the Fi will generate H, i.e. H = 〈F1, . . . Fn〉. Let e1, . . . , en denote the usual 
basis of Rn. The map given by ei 
→ Fi determines a surjective map of R-modules:

Rn
φ

H .

We seek a set of generators for the kernel of φ. Since R can naturally be identified with a 
polynomial ring, we will identify polynomials in R with those in S that do not involve x. 
If α ∈ R and in S, cFi ∈ I then clearly αei ∈ kerφ. It is easy to see that these are 
precisely the vectors of the form gei in the kernel of φ. The set of minimal generators of 
kerφ of this form is

Ω = {αei| where α is a minimal generator of (I : Fi) not involving x}.

An element 
∑

αjej (with αj ∈ R) is in kerφ if and only if 
∑

αjFj ∈ I. Since the Fi

are monomials and I is a monomial ideal, this condition is that the non-canceling terms 
of this sum are in I. Let v =

∑
αjej ∈ kerφ. We subtract off multiples of elements in 

Ω if necessary to assume that 
∑

αjFj = 0. But such (αj) are just syzygies of the ideal 
(Fi) in the polynomial ring R. Generators can be computed by (for instance) the Taylor 
complex. We have proven:

Theorem 3.4. Let I be a squarefree monomial ideal in S and suppose that xF1, . . . , xFn

are the minimal generators of I that are divisible by x. Let N be the block diagonal 
matrix, the ith block of which is the row matrix consisting of the minimal generators of 
I : Fi (over R). Let P be the matrix whose columns are the minimal syzygies of the ideal 
generated by the (Fi), written with respect to the same ordering of the Fi as in the block 
diagonal matrix N . Then the block matrix M = (N |P ) is a presentation matrix for H.

Example 3.5. Consider the following ideal I of height 4:

I = (xa, xb, xcd, ah, ak, bh, bk, ac, ad, bc, bd, hk), {βi(S/I)} = {1, 12, 30, 34, 21, 7, 1}.

The presentation matrix for H = (I : x)/I will have three rows – one for the generators 
a, b, cd respectively. Theorem 3.4 says a presentation matrix is:

⎛
⎜⎝ c d h k 0 0 0 0 0 0 0 b hk 0

0 0 0 0 c d h k 0 0 0 −a 0 hk

0 0 0 0 0 0 0 0 a b hk 0 −a −b

⎞
⎟⎠
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Notice that the last two columns are not minimal relations. Thus the following is actually 
a minimal presentation matrix, and notice it is block diagonal:

⎛
⎜⎝ c d h k 0 0 0 0 b 0 0 0

0 0 0 0 c d h k −a 0 0 0
0 0 0 0 0 0 0 0 0 a b hk

⎞
⎟⎠ .

This means that H has R/(a, b, hk) as a direct summand and exemplifies the follow-
ing Corollary. The betti numbers of H are {3, 12, 19, 15, 6, 1} and the betti numbers of 
S/(I, x) (as an R-module) are {1, 9, 18, 15, 6, 1}.

Corollary 3.6. Let I be a squarefree monomial ideal of height c with x ∈ supp I. If 
I = x(F1, . . . , Fn) +K where F1, . . . , Fn is a monomial regular sequence, K is a monomial 
ideal with x /∈ suppK and FiFn ∈ K for i = 1, . . . , n − 1, then there is an isomorphism 
of R = S/(x)-modules

H ∼= R/L⊕H ′

where L = I : Fn and H ′ �= 0. Moreover, the heights of AnnH ′ and L are at least 
ht I − 1.

Proof. Consider the presentation matrix M in Theorem 3.4. P will be the first syzygy 
matrix on the Fi, which we can take to be the first matrix in the Koszul complex on 
the Fi. Those columns of P whose last entry is nonzero are of the form Fnei − Fien for 
i = 1, . . . , n − 1. Since FnFi ∈ I, both terms of this sum are syzygies themselves and 
appear as columns of N , so these syzygies in P are non-minimal and are not necessary. 
We may assume the last row of P is zero. Since N is a block diagonal matrix, this allows 
us to write M as a block diagonal matrix, M = (L|M ′) where L is the bottom row of N
and M ′ is the rest.

Finally, notice that in R, the ideal I = (I+(x))/x has height at least ht I−1, for adding 
x to any minimal prime of I will yield a prime containing I. Since I ⊂ AnnH ⊂ AnnH ′, 
the result on height follows. �
Corollary 3.7. Let I be a squarefree monomial ideal, x ∈ supp I, and H = (I : x)/I. 
If I = x(F1, . . . , Fn) + K where F1, . . . , Fn is a monomial regular sequence, K is a 
monomial ideal with x /∈ suppK, and FiFn ∈ K for i = 1, . . . , n − 1. Then for all i,

βi(S/I) ≥
(
c

i

)
+

(
c− 1
i− 1

)
, β(S/I) ≥ 2c + 2c−1.

Moreover, if S/(I, x) is not a complete intersection then β(S/I) > 2c + 2c−1.
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Proof. By Proposition 3.2, Corollary 3.6, and Proposition 2.3, we have that

βi(S/I) = βR
i (S/(I, x)) + βR

i−1(S/L) + βR
i−1(H ′).

Since the annihilators of the modules appearing on the right are of height at least c − 1, 
by Remark 2.4 we have that

βi(S/I) ≥
(
c− 1
i

)
+

(
c− 1
i− 1

)
+
(
c− 1
i− 1

)

=
(
c

i

)
+
(
c− 1
i− 1

)
.

The assertion on β(S/I) follows by taking sums. If S/(I, x) is not a CI then the inequality 
will be strict, as then βR

1 (S/(I, x)) > c − 1. �
Remark 3.8. The ideal I = (xy, xz, yz, u1, u2, . . . , uc−2) illustrates that these inequalities 
are sharp.

4. Properties of NCI ideals

Lemma 4.1. Suppose that I is NCI. If m1 and m2 are two minimal monomial generators 
of I then their gcd has degree at most 1.

Proof. If x and y are distinct variables that divide m1 and m2 then I(x = 1) is not a CI 
since m1/x and m2/x are minimal generators with a common factor. �
Lemma 4.2. Suppose that I is NCI and F is a minimal generator of I. Then F must 
have a factor in common with some other generator.

Proof. Since I is not a CI there are two minimal generators M1, M2 that have a factor in 
common. Since F is a monomial of degree at least two, let x and y be two variables that 
divide F , and assume that x, y do not appear in any other minimal generator. Then the 
generators of I(x = 1) are the same as those of I except that F is replaced with F/x. 
M1 and M2 will still be minimal generators, since they are not divisible by (F/x) which 
has y as a factor. �
Remark 4.3. Notice that the ideal I = (xy, yz, zw) is NCI, but only one generator is 
divisible by x. Thus the lemma cannot be strengthened to say that any x ∈ supp I must 
divide at least two generators.

Lemma 4.4. Suppose I is NCI squarefree monomial ideal and each associated prime has 
the same height c ≥ 2. Then if x ∈ supp I divides at least two minimal generators of 
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I then there exist monomials F1, . . . , Fn, K1, . . . , Kc−n that form a monomial regular 
sequence, and an ideal J ⊂ (F1, . . . , Fn) such that

I = x(F1, . . . , Fn) + J + (K1, . . . ,Kc−n). (4.1)

Moreover, at most one of F1, . . . , Fn has degree greater than 1. If Fn has degree greater 
than 1 then J ⊂ (F1, . . . , Fn−1).

Thus there are variables a1, . . . , an−1 and monomials h1K
′
1, . . . , hc−nK

′
c−n with

I = x(a1, . . . , an−1, Fn) + J + (h1K
′
1, . . . , hc−nK

′
c−n) (4.2)

where (a1, . . . , an−1, Fn, hiK
′
i) is a monomial regular sequence and J ⊂ (a1, . . . , an−1,

Fn).

Proof. The Fi are defined by the minimal generators xF1, . . . , xFn that are divisible 
by x. Since I is NCI, I(x = 1) must be a monomial complete intersection. Its height 
must be c since the associated primes of I(x = 1) are contained in those of I. Hence 
there must be monomials K1, . . . , Kc−n such that

I(x = 1) = (F1, . . . , Fn,K1, . . . ,Kc−n).

Define J to be the ideal defined by any remaining minimal generators of I. These must 
be in (F1, . . . , Fn) since they are not in the ideal generated by the xFi and Ki. This 
proves that I is of the form given in (4.1).

Let K = (K1, . . . , Kc−n). Notice that

• ht(J +K) ≥ c −1 since if P is a minimal prime of J +K, then (P, x) will be a prime 
containing I.

• htK = c − n.

We conclude the height of J is at least n − 1. Therefore, J is not contained in an ideal 
generated by only n − 2 of the Fi. Thus without loss of generality, J contains minimal 
generators FiGi for i = 1, . . . , n −1. Each generator has gcd(FiGi, xFi) = Fi, and thus by 
Lemma 4.1 Fi has degree one. The final claim follows since if J had a minimal generator G
divisible by Fn then gcd(G, xFn) would have degree greater than 1, a contradiction. �

Now that we have the notation established in Lemma 4.4, we have all the tools we 
need to complete the proof of Theorem 2.7. In Proposition 4.5 we take care of the case 
when there is a generator of degree at least three. Next we let n be as in Lemma 4.4
and proceed by looking at the cases when n = c and n < c in Propositions 4.6 and 4.9
respectively.
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Proposition 4.5. Suppose that I is NCI and all associated primes of I have height c ≥ 2. 
Suppose I has a generator of degree at least 3. Then β(S/I) > 2c + 2c−1. In addition 
βi(S/I) ≥

(
c
i

)
+
(
c−1
i−1

)
for all i.

Proof. By Lemma 4.2, the generator of degree at least three will have a variable x in 
common with at least one other generator. Call this variable x. By Lemma 4.4 we may 
assume that there exist ai, hi, K ′

i as in Lemma 4.4 such that

I = x(a1, . . . , an−1, Fn) + J + (h1K
′
1, . . . , hc−nK

′
c−n)

with n ≥ 2 and degFn ≥ 2. We will show that aiFn ∈ I for i = 1, . . . , n − 1 and then 
the result will follow from Corollary 3.7.

Since degFn ≥ 2, there are two distinct variables y, z so that Fn = yzF0. Note that 
y, z �= ai since that would imply xFn = xyzF0 is not a minimal generator. Let us examine 
I(y = 1).

I(y = 1) = (xa1, . . . , xan−1, xzF0) + J(y = 1) + (h1K
′
1, . . . , hc−nK

′
c−n)(y = 1).

This must be a complete intersection, so at most one of xa1, . . . , xan−1, xzF0 can be a 
minimal generator of I(y = 1). But xzF0 must be a minimal generator, so we have that 
the xai are not minimal generators of I(y = 1) and this means yai ∈ I for all i. Thus 
aiFn = aiyzF0 ∈ I as required. The same argument shows that zai ∈ I for all i as well. 
We are thus able to apply Corollary 3.7 and the results follow. Note that (I, x) is not a 
CI as ya1, za1 ∈ I. �

All that remains is the case when I is NCI generated in degree two. The following 
Proposition is true without the NCI condition.

Proposition 4.6. Suppose I is a squarefree monomial ideal of height c ≥ 2 of the form

I = x(a1, . . . , ac) + J

where J ⊂ (a1, . . . , ac) and x /∈ suppJ . Then

β(S/I) ≥ 2c+1 − 2 ≥ 2c + 2c−1.

The second inequality is strict when c ≥ 3. More specifically we have:

β1(S/I) ≥ 2c− 1, βi(S/I) ≥ 2
(
c

i

)
for i ≥ 2.

Proof. Notice that htJ ≥ c − 1 and that x(a1, . . . , ac) ∩ J = xJ . We have

β1(S/I) = c + β1(S/J) ≥ c + (c− 1) = 2c− 1,
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and for i ≥ 2, by Propositions 3.1 and 2.3

βi(S/I) = βi(S/x(a1, . . . , ac)) + βi(S/J) + βi−1(S/(x(a1, . . . , ac) ∩ J))

=
(
c

i

)
+ βi(S/J) + βi−1(S/xJ)

=
(
c

i

)
+ βi(S/J) + βi−1(S/J)

≥
(
c

i

)
+

(
c− 1
i

)
+

(
c− 1
i− 1

)
= 2

(
c

i

)
.

Summing, we see that

β(S/I) = 1 + β1(S/I) +
∑
i≥2

βi(S/I) ≥ 1 + (2c− 1) + 2(2c − 1 − c) = 2c+1 − 2. �

Example 4.7. The inequalities above are sharp. Let I = (xa, xb, xc, ad, be). Then ht I = 3
and {βi(S/I)} = {1, 5, 6, 2}, so β(S/I) = 14 = 24 − 2.

More generally, the family of ideals

x(a1, . . . , ac) + (a2b2, . . . , acbc)

has sum of betti numbers equal to 2c+1 − 2 as can be checked using the decomposition 
above. Evidently the bounds for the individual betti numbers must be equalities as well.

Remark 4.8. We remark that if equality holds when c = 2 then it is clear that the betti 
numbers βi(S/I) are {1, 3, 2}.

The last remaining case we have is:

Proposition 4.9. Suppose that I is NCI and all associated primes of I have height c ≥ 2. 
Suppose all generators of I have degree 2. Then I is of the form:

I = x(a1, . . . , an) + J + (h1k1, . . . , hc−nkc−n)

for n ≥ 2. If n < c then β(S/I) ≥ 2c + 2c−1. The inequality is strict unless n = 2 and 
c = 3.

If n = c − 1 then

βi(S/I) ≥
(
c

i

)
+

(
c− 1
i

)
if 1 ≤ i ≤ c.

If n < c − 1 then

βi(S/I) ≥
(
c

i

)
+

(
c− 1
i− 1

)
if 0 ≤ i ≤ c.
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Proof. By Lemma 4.4, I is of the form

I = x(a1, . . . , an) + J + (h1k1, . . . , hc−nkc−n).

Suppose that n < c. Let K = (h1k1, . . . , hc−nkc−n). Notice that ht(J + K) ≥ c − 1 as 
proven in Lemma 4.1. By Proposition 3.1 we have that

β1(S/I) = β1(S/x(a1, . . . , an)) + β1(S/(J + K))

≥ n + (c− 1),

βi(S/I) = βi(S/x(a1, . . . , an)) + βi(S/(J + K)) + βi−1(S/(x(a1, . . . , an) ∩ (J + K)))

=
(
n

i

)
+ βi(S/(J + K)) + βi−1(S/(a1, . . . , an) ∩ (J + K))

≥
(
n

i

)
+

(
c− 1
i

)
+

(
m

i− 1

)
for i ≥ 2

where m = min(n, c − 1) ≤ ht((a1, . . . , an) ∩ (J + K)). Then we have that

β(S/I) ≥ 2n + 2c−1 + 2m − 2.

Case 1: n = c − 1: The inequalities simplify to

β1(S/I) ≥ 2c− 2

βi(S/I) ≥
(
c

i

)
+

(
c− 1
i

)
i ≥ 2

which yield β(S/I) ≥ 2c + 2c−1 − 2.
However notice that equality occurs only if (J + K) is a CI. We will rule this out. 

Indeed, consider I(h1 = 1). This has xa1, xa2 as minimal generators and thus, either 
a1h1 or a2h1 is in J . But then (J + K) contains h1k1 also, so that (J + K) is not a CI 
and β1(S/I) ≥ 2c − 1. Now β(S/I), which is even, must be at least 2c + 2c−1 − 1. The 
result follows.

If c ≥ 4, we see from examining I(h1 = 1), and I(k1 = 1) that there are at least 
n − 1 = c − 2 generators of J of the form aih1 and (c − 2) of the form aik1. Since h1k1
is also a minimal generator,

β1(S/(J + K)) ≥ (c− 2) + (c− 2) + 1 = 2c− 3 ≥ 2 + (c− 1).

Thus one bound from Proposition 2.3 is off by at least 2, so β(J +K) ≥ (2c−1 − 1) + 2. 
Similarly, (a1, . . . , an) ∩ (J + K) includes all the same generators aik1, aih1, so

β1(S/J) ≥ (c− 2) + (c− 2) = 2c− 4 ≥ 1 + (c− 1).

Thus we have that β(S/I) ≥ 2c + 2c−1 + 1 as required.
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Case 2: n ≤ c −2: We will assume that any variable y divides at most n minimal genera-
tors. In other words, we have chosen the x that divides the largest number of generators. 
Consider the ideal I(h1 = 1), which must be a CI. This ideal contains xa1, . . . xan. 
At most one of these can be a minimal generator. Thus there must be minimal gen-
erators in J(h1 = 1) that divide n − 1 of these terms. Without loss of generality, say 
h1a1, . . . , h1an−1 ∈ J . These are minimal generators. Thus h1 divides n generators and 
by assumption, it divides no other generators. In particular, h1an /∈ I.

Now since n ≤ c − 2, h2k2 ∈ I. Observe that I(h2 = 1) contains xa1, . . . , xan−1 and 
h1a1, . . . , h1an−1. As xh2 /∈ I and h1h2 /∈ I we must have that h2a1, . . . , h2an−1 ∈ I and 
as before, h2an /∈ I.

Finally, consider I(an = 1). This ideal contains h1ai and h2ai for 1 ≤ i ≤ n − 1. This 
implies that anai ∈ I for each I. We are now in the case of Corollary 3.7. Notice that 
(I, x) is not a CI since it contains h1a1 and h2a1 so the inequality is strict. �
Example 4.10. If I is NCI of height 3 and β(S/I) = 23 + 22 then from the proofs above, 
I has exactly 5 quadratic generators and up to relabeling, I must be of the form

I = x(a1, a2) + (a1h1, a2k1) + (h1k1).

This is the second case in Theorem 1.1. The betti numbers of I are {1, 5, 5, 1}.

Proof of Theorem 2.7. If I has an associated prime of height at least c + 1 then by 
Proposition 2.3, βi(S/I) ≥

(
c+1
i

)
. Hence we may suppose that all associated primes 

of I have height c. If I has a minimal generator of degree at least three, the result 
follows from Proposition 4.5. If I is generated in degree two, then the result follows from 
Propositions 4.6 and 4.9, which include the cases where equality holds. �
5. The individual betti numbers

In [5] it was shown that if M is a multi-graded module of finite length over 
S = k[x1, . . . , xc] and M is not isomorphic to S modulo a regular sequence then ei-
ther βi(M) ≥

(
c
i

)
+

(
c−1
i−1

)
for all i or βi(M) ≥

(
c
i

)
+

(
c−1
i

)
for all i. This means that, for 

instance, the first or last betti number must be at least 2. Such bounds will not hold 
without the finite length condition, even in the multi-graded case.

The results in this paper can be assembled to give general bounds for the numbers 
βi(S/I) when I is a monomial ideal. Suppose that I is a squarefree monomial ideal of 
height c. Then by Algorithm 2.6 we have that

βi(S/I) ≥ βi(S/(J, u1, . . . , uc−d)

where J is NCI of height d. Then by Propositions 4.5, 4.6, and 4.9 for i ≥ 1 we have that
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βi(S/J) ≥ 2
(
d

i

)
for all i ≥ 2 and β1(S/J) ≥ 2d− 1 or (5.1)

βi(S/J) ≥
(
d

i

)
+
(
d− 1
i− 1

)
for all i ≥ 0 or (5.2)

βi(S/J) ≥
(
d

i

)
+
(
d− 1
i

)
for all i ≥ 1 (5.3)

Then notice that the betti numbers of S/I can be obtained from those of S/J by 
tensoring with the appropriate Koszul complex on the ui. In terms of generating series:

∑
βi(S/I)ti =

(∑
βi(S/J)tj

)
(1 + t)c−d. (5.4)

Unfortunately, because in (5.1) and (5.3) the formula is different for i = 0, 1, and i = 0
respectively, it doesn’t follow that similar bounds exist for S/I, say with d replaced by c, 
as seen in the following Example.

Example 5.1. Given that (5.1) is considerably larger than the other two bounds, it is 
reasonable to ask that if I is an ideal of height d whether or not at least one of (5.2) or 
(5.3) holds. If d = 4, then this would say that the betti sequence of S/I is at least as 
big as {1, 5, 9, 7, 2} or {1, 7, 9, 5, 1}. However, if I = (xy, yz, zv, vw, wx, u) then the betti 
numbers are {1, 6, 10, 6, 1} which violate both bounds. Hence the bounds determined by 
(5.4) are perhaps the best we can hope for.

Example 4.7 and Remark 3.8 show that (5.1) and (5.2) are sharp.
Finally, notice that equality in (5.3) is impossible, as the sum of the numbers (with 

β0 = 1) on the right hand side is 2c + 2c−1 − 1, an odd number. Thus at least one of the 
betti numbers is at least one larger. If I = (xy, yz, zv, vw, wx) then the betti numbers 
are {1, 5, 5, 1} which are as close to the bound {1, 5, 4, 1} as possible.
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