
Final Project Due on the Day you take the Final

In this project you will learn about one of the most important (and beautiful) applications of Linear Algebra - an
application of “dot product” to the “least squares” fitting.

This project has 3 parts.

1. You MUST complete Part 1 of this project.

2. If you only complete Part 1, then this project will count for 15% of your final exam score.

3. If you complete Parts 1 and 2, then this project will count for 25% of your final exam score, unless your final
exam score is higher, in which case the project will count for 10% (this will help boost your class grade)

4. If you complete Parts 1, 2, and 3 then this project will count for 30% of your final exam score, unless your
final exam score is higher, in which case the project will count for 10% (this will help boost your class grade)

Example: Suppose you do Part 1 and get a 95% and on the in-class final you earn a 70%. Then your final exam
score will be

(.15)(.95) + (.85)(.70) = .7375

If you completed Part 2 as well (and earned a 95%) then your 70% in-class score would be increased to

(.20)(.95) + (.80)(.70) = .7625

You may ask me for help with this project, and you may also work with your peers. However, I ask that everyone
write up their solutions individually. Some of the questions are quite challenging, but that’s ok - you can do
it!

What do I have to do?
• Below, I coach you through the computational steps required to find a “least squares” linear approximation
to a data set.

• Please read through the instructions and work everything out.
• There may be parts that are confusing at first, but hopefully by the end, you will have a solid grasp on
what we’re doing.

• In particular you should hopefully have a grasp on how by choosing a point “closest” to a plane, we are
minimizing something.

• After you are done working through everything on scratch paper, please write up a report summarizing
what you did, showing your work and explaining your steps.

• For instance, at the beginning you will probably refer to a set of points - make sure your report includes a
picture, or else the reader won’t know what you’re talking about.

• This doesn’t need to be long, but it does need to be well-written and presented clearly. I think a full report
might be 1-2 pages long (plus some pictures I will ask you to include.)

• It’s OK if you just work through the steps on the bulleted points below and explain the connections.
• This might just feel like a long homework assignment with some calculuations. I recommend doing your
calculations very carefully. If you’re stuck please ask me for help!

• Parts of this project use formulas that we won’t get a chance to prove in our class, but if you want to
explore why they are true, that’s what Parts 2 and 3 are for.

• Note that Part 1 is a written report. Parts 2 and 3 require you present your solution either in my office or
in a video.



Part 1:

Consider the following problem. You are trying to
find the equation of the line that passes through the
data points in the picture. Now you’re probably think-
ing - there’s no line that passes through all of these
points.

• Justify this statement. Pay careful attention to
your writing and your explanation. Don’t over-
think this, but make sure your explanation is clear
and convincing.

However, you have perhaps heard of something
called a best fit line that roughly approximates
these data points. There are lots of different
ways we could do this, but the way we will focus
on in this problem is something called the least-
squares fit. Go on Desmos and after watching this
short video: https://help.desmos.com/hc/en-us/

articles/4406972958733-Regressions

• With the data set of our problem, use Desmos to get the best fit line, like they did in the video. You’ll want
to use the ∼ symbol as opposed to the = sign. You should get the line y = 1.3x + 1.9. How many of your
original data points does this line go through? Draw (or screenshot) a LARGE picture of this line and you
data points. You are going to do some calculations. On a separate LARGE picture (I’m thinking full page
for each picture) I want you to draw a line that goes through the leftmost and rightmost points. You should
get a different line. Find the equation of this line. On your pictures, for each line, I want you to draw in
vertical lines, measuring how far each line is from the data points. For instance, for the line 1.3x+ 1.9 at the
point where x = 2 your first line gives the point (2,4.5) and the data point is higher at (2,5). Draw a vertical
line going UP from this line to the data point and carefully label this distance. (In this case the distance is
0.5). When you are done you should have a total of 10 distances, 5 for each graph. Some of the distances
might be zero.

By the way, on this assignment I will be paying careful attention to your writeup and your presentation.
This assignment doesn’t have to be long. Apart from the pictures, I think everything might be possible to
fit on a single page or two. But I will be looking that your have things presented in a clear and readable
way.

• Next for each line I want you to calculate the “sum of squares” of these distances. Of course you should use
a calculator, but I ask you to show your work so I can verify you are doing the calculation correctly.

The “least squares line” is the line that minimizes this “sum of squares” of the distance between the line and
the data points. This approximation is very useful and we are going to explore how to find it. The one that the
computer found is the least-squares line. Among all the possible lines you could every try. This one will have the
smallest “sum of squares of the errors”. You should have seen that the second line you drew had a high sum of
squares. That line was not as good of an approximation.

What is our goal anyways? Ideally, we would want to find m and b so that y =mx+ b were true for all of our data
points. Let’s practice with a different data set to see what happens with an exact solution is possible.

Suppose we have the points (1,5), (2,7), (5,13), (10,23). If you want to solve for m and b, you could plug each
point (x, y) into y =mx + b and you would get, for instance if we plugged in x = 2, y = 7 we’d get

7 = 2m + b.



Normally, we put the constant on the right hand side, so we’ll write this as

2m + b = 7.

• Do the same for the other 3 points and you should get a system of 4 equations in 2 unknowns. Write this
system clearly and neatly, in the form of

?m+?b =?

like above. Using an augmented matrix, solve this system to see what m and b must be. (This will be
consistent, because there is an exact solution.) Write the system you just solved as a matrix equation. You

should have a matrix times the vector [m
b
] equal to a vector. Using your solution, write an equation using

the columns of your matrix to demonstrate that the right hand vector is in the span of the columns of your
matrix.

• Returning to our original data set (the one on the front page), write down what the system of equations
would be. Write it as a matrix equation:

Ablah = foo

In this setup what is blah? foo? One of these will be a vector of numbers from your data set, the other
will be a vector with the variables you are hoping to solve for. You don’t have to write blah or foo on your
project, but make sure you clearly indicate what your equation is.

• Ok, so in this problem you have already justified above that there is NOT a line that goes through all of
the data points. So this system is NOT consistent. This means that foo is NOT in the span of the columns
of A.

Make sure you understand this - what comes next will be mighty confusing if you doing understand this.

• Hmm, now what is the span of the columns of A? We had a name for this space. And we had a way to
describe it by giving a basis. In a paragraph, explain what the space is, write down the basis and give a
description using the words “subspace, dimension”. For instance you might say “this is a 5 dimensional
subspace of R7 with basis.” Hint: Your basis should consist of vectors whose entries are all whole numbers
and you shouldn’t have to do any calculations to find it. If you find yourself doing calculations to find the
basis, STOP and check with me.

• Draw a picture of this situation. You are working in
a high dimensional space, but that’s ok - your sub-
space is only 2 dimensional, so that means it is a
[line/plane/hallowe’en dog]. You can draw a picture
of this, and you can also draw the vector foo that is
NOT in that space. As you draw your picture, incor-
porate a point in your subspace that is CLOSEST to
the point foo. Draw a little line connecting foo to
your plane. I’m looking for something like this, but
with labels for your vector and your subspace.

• Recall that there are lots of different bases that we can find and use for a subspace. The one you wrote down
above is a perfectly fine basis but the vectors in it are not perpendicular. At the moment let’s fix some
notation. Your basis should have two vectors in it. One of those vectors should have different entries. Let’s



call that one v1 and the other one v2. Our goal in the next step is to find a basis for your subspace with
perpendicular vectors. A synonym for perpendicular is orthogonal. The formula for doing that is as
follows:

To turn a basis {v1, v2} into an orthogonal basis, you will

– Keep v1 the same. Replace v2 with v2 −
v1 ⋅ v2

v1 ⋅ v1
v1 where ⋅ denotes the dot product of two vectors. Note

that that fraction is a scalar, and you are multiplying it by v1.

By using this process, please find an orthogonal basis for your subspace. You answer should have two vectors,
one whose entries are all integers and one whose entries involve fractions with denominator 11. Double check
that your vectors are perpendicular by verifying that their dot product is zero. Let’s call your new vectors
w1,w2.

• If only there were a formula for how to find the closest point to a subspace. Oh wait, there is, provided you
have an orthogonal basis.. Phew, good thing we did that!

If you want to project a vector v onto a subspace that has orthogonal basis {w1,w2} then you will get:

Projv = v ⋅w1

w1 ⋅w1
w1 +

v ⋅w2

w2 ⋅w2
w2.

Use this formula to figure out what vector is ⋆ in the picture above. Your vector should have numbers that
have no more than 1 place after the decimal. This formula only works if you have an orthogonal basis, that’s
why we needed the earlier steps.

• Ok now, you are almost done. Your vector, call it p is IN the subspace. Go back and label that closest point
in your picture p. Now, although your original equation

Ablah = foo

had NO solution since foo was not in the span of the columns of A. You have now found the “closest point
to foo that is actually in the span of columns of A.” That’s what p is. This means that the equation

Ablah = p.

Will have a solution, (and that the solution will give a the line y =mx+ b that is the “closest” line, in terms
of least squares.) Solve this system, and if everything went well, you should see the numbers 1.3 and 1.9
popping out.

• To summarize what you have just done: You have taken a system that was inconsistent, because the vector
foo was not in Col(A). But then you found the “closest point in Col(A) to foo” and then you solved the
consistent system with this new point. Along the way, you used some formulas to find these closest points.

• I think this is so cool, because to solve a “minimize the error” problem, we didn’t need any calculus, just a
way to “find the closest point” which we did with these projection formulas. In Part 2 you will see how to
prove these formulas.

• However, the story gets even better. In a surprising plot twist, there is an even quicker way to find the
least-squares line.

To find the least-squares solution to Ax = b, you just solve the system

ATAx = AT foo.

Go ahead and solve this system (showing all of your work, and row-reducing the matrices by hand) and verify
that again you get the same y =mx + b as you got before.



Story Time: This method with ATA is called the normal equation method and is how computers can quickly
find least-squares approximations. This method is great because you don’t need to do any projections or
deal with orthogonal bases directly. In other words all this is done behind the scenes. However, to really
understand what is happening, and why this ‘normal equation’ works relies on the geometric insight we
developed throughout the class. In Parts 2 and 3 you will go deeper into the theory. If you think this stuff
is fun, I really encourage you to give it a try and see what happens!



Part 2:

In this part you will make a presentation. You can either record a video of your explanation on a whiteboard,
with slides, or with writing on paper, OR you can come by my office sometime and present your explanation.
Your presentation should include an explanation of both Tasks 1 and 2.

How do you find an orthogonal basis?

Let’s start with two vectors in the plane, say v = [2
1
] and w = [−1

0
]. These vectors are not orthogonal. But

what if you wanted to build an orthogonal basis for R2 using your vectors.

Task 1: Find an orthogonal basis for R2 of the form

{v,w + av}.

In other words your job is to find what the scalar a needs to be in order to make these vectors orthogonal.
Before consulting any books, I want you to think about how your would do this. Can you draw a picture?
Would you solve some equations? In your presentation, I want to know how your first thought about this.
Draw a picture of v and think about what vectors are perpendicular to it. How could you find one of those
that is of the form w + av?

STOP

Ok, after you’ve thought about the problem above, here’s an idea that can help.

Dot product to the rescue:

You want the dot product of the two vectors in your basis to be equal to zero. Write this down as an equation
involving a,v,w. (Don’t use any numbers yet) Then solve your equation for a and see what you get. You
should get a formula similar to something in Part 1 of this project. Verify that this is the same as the method
you used above.

Pause: before moving on to task 2, make sure you understand what i’m getting at. When you dot perpen-
dicular vectors you always get 0, make sure you see how this gets rid of terms in the example above. This
will help a lot with Task 2.

Task 2: Now suppose that we have a basis for a two dimensional plane H in R3, say the vectors are v1,v2

and we have a random vector v in R3 that we want to project as a vector in H plus a perpendicular vector
p. This means we want something like:

v = a1v1 + a2v2 + p.

Using the same idea of “dot product” to the rescue. Can you find a way to solve for a1, a2 and p in terms
of v,v1,v2?

Some hints: What happens if you take the dot product of both sides with v1? Hmm, what would happen if
you dotted p with v1? Will a picture help?



Part 3:

There are actually ways to define dot products in spaces other Rn, even in infinite dimensional spaces! For
instance, if our space is V the space of all functions f ∶ R → R, then one way to define the “dot product” of
two functions is as follows (I’m going to use ⋆ to make it clear this is a different operation)

Definition: If f, g are two vectors in V then

f ⋆ g = 1

π
∫

π

−π
f(x)g(x)dx

As a warmup, use Desmos to calculate: x2 ⋆ cos(x), sin(x) ⋆ cos(2x), and sin(3x) ⋆ sin(3x).

You should have found that two of the vectors in the previous problem were orthogonal. In fact, ALL of
the following vectors are ALL orthogonal to each other AND they all dot with themselves to give 1.

B = { 1√
2
, cosx, sinx, cos 2x, sin 2x, cos 3x, sin 3x, . . . ,}

Whoa: That’s some really nice property - no matter which two vectors you take, either v ⋆w = 0 if we
take two different vectors and if we dot a vector with itself we get v ⋆ v = 1.

Task 1: Verify (in a video or in my office) some of the claims in the above Whoa statement. You don’t have
to prove everything in general, but I want to get a sense that you understand the profundity of this claim,
that there are different cases, that sometimes the integral is zero, that sometimes it is 1. That there’s some
sine and cosine stuff going on and what’s going on with the 1√

2
?

So the set above is actually extremely useful. We can use this space to find really good approximations for
functions. For example, imagine you have the function:

f(x) = 2 cos(x) + 3 sin(x)

this can be written a combination of elements of our set B. You just take 2 of the cosx and 3 of the sinx.
But what if you had a mystery function M(x) that you knew was built out of these functions. (Say you have
a wave pattern in a recording) below:

and you want to know how this is built out of the elements of B. Well guess what...



.......The Dot Product Comes to the Rescue

Being the curious scientist that you are, you use a compute (computers can numerically calculate integrals
given a table of values, after all) a BUNCH of integrals with your Mystery function M and the elements of B

M ⋆ 1√
2
= 0

M ⋆ sinx = 1

M ⋆ cosx = 1

M ⋆ sin(2x) = 0

M ⋆ cos(2x) = 3

M ⋆ sin(3x) = 0

M ⋆ cos(3x) = 0

M ⋆ sin(4x) = 0

M ⋆ cos(4x) = 0

M ⋆ sin(5x) = −4

M ⋆ cos(5x) = 0

And this information leads you to see: “Hmm, my function seems like it’s orthogonal to a lot of these
functions, but it’s actually got some nontrivial involvement with some of these things... I wonder if... ”

And sure enough

M(x) = sin (x) + 3 cos (2x) − 4 sin (5x) + cos (x) .

Do you see where those coefficients come from?

Task 2: Take the function M(x) above, and knowing what its formula is, go ahead and take the ⋆ product

M(x) ⋆ sin(5x)

and do it WITHOUT using any integrals. Use the fact that ⋆ is distributive, so you can just calculate ⋆
with each term individually. AND use the fact that you know that all the properties of B from the Whoa
box above.

After showing how you calculated that product, consider the following. If you had a function that you knew
was of the form

P (x) = a 1√
2
+ b sin (x) + c cos (x) + d sin(2x) + e cos(2x)

what would you do to try and figure out what the coefficients of a, b, c, d, e are ? Can you relate this to what
you did in Part 2?

That’s it - you’re done.... BUT if you want to do something really fun...



Not every function can be built from the functions in B. For instance, all of those functions are periodic
with period 2π. However, if we allow infinite sums and only look in the range from −π to π we can
actually get pretty far. For instance, if we HOPED that the function x were a combination of these things
we might try:

x = a 1√
2
+ b sin (x) + c cos (x) + d sin(2x) + e cos(2x)

and using ⋆ product we could estimate what happens with the coefficients and get

x = 0 1√
2
+ 2 sin (x) + 0 cos (x) − 1 sin(2x) + 0 cos(2x)

And this doesn’t look too bad!

If we wanted to try more terms, say going all the way to sin/cos of (5x) we could get

x = 2 sinx − sin 2x + 2

3
sin 3x − 2

4
sin 4x + 2

5
sin 5x

You may have noticed a pattern - that the coefficient of sinnx is the same as ± 2
n . (and that all the coefficients

of cos(nx) are zero. You could verify this by calculating e.g.
1

π
∫

π

−π
x sin(nx)dx.

This is true! And so if the pattern continues, we get that

x = 2

1
sinx − 2

2
sin 2x + 2

3
sin 3x − 2

4
sin 4x + 2

5
sin 5x − 2

6
sin 6x + 2

7
sin 7x + . . .

Now if you ⋆ both sides with themselves, you’ll get:

x ⋆ x = (2
1
sinx− 2

2
sin 2x+ 2

3
sin 3x− 2

4
sin 4x+ 2

5
sin 5x⋯) ⋆ (2

1
sinx− 2

2
sin 2x+ 2

3
sin 3x− 2

4
sin 4x+ 2

5
sin 5x⋯)

But oh my gosh, what happens on the right hand side - all the ⋆ products where we have different terms will
be zero (by the Whoa property). So that the simplified right hand side is:

x ⋆ x = (2
1
)2 sin(x) ⋆ sin(x) + (2

2
)2 sin(2x) ⋆ sin(2x) + (2

3
)2 sin(3x) ⋆ sin(3x) + (2

4
)2 sin(4x) ⋆ sin(4x) +⋯

But the Whoa property also says that sin(nx) ⋆ sin(nx) = 1 so we have that



x ⋆ x = 4 + 4

22
+ 4

32
+ 4

42
+⋯

x ⋆ x = 4(1 + 1

22
+ 1

32
+ 1

42
+⋯)

But wait a minute, let’s calculate

x ⋆ x = 1

π
∫

π

−π
x ⋅ xdx = 1

π

1

3
(π3 − (−π3)) = 2π2

3

So we get that
2π2

3
= 4(1 + 1

22
+ 1

32
+ 1

42
+⋯)

which means:

1 + 1

22
+ 1

32
+ 1

42
+⋯ = π2

6
.

(This is one of the most beautiful facts I’ve ever seen in all of math - and you can understand it just using the
powers of linear algebra! Dot products, perpendicularity, and a little optimism. It’s been a great semester
working with everyone. I hope you enjoyed this project.)


